The aim of this paper is to investigate harmonic Stieltjes constants occurring in the Laurent expansions function \[ \zeta_{H}\left( s,a\right) =\sum_{n=0}^{\infty}\frac{1}{\left( n+a\right) ^{s}}\sum_{k=0}^{n}\frac{1}{k+a},\text{ }\operatorname{Re}\left( s\right) >1, \] which we call Hurwitz zeta function. In particular evaluation formulas for $\gamma_{H}\left( m,1/2\right) $ and m,1\right) ar...