نتایج جستجو برای: lax friedrichs
تعداد نتایج: 4978 فیلتر نتایج به سال:
Abstract: In this paper, an arbitrary Lagrangian-Eulerian local discontinuous Galerkin (ALE-LDG) method for Hamilton-Jacobi equations will be developed, analyzed and numerically tested. This method is based on the time-dependent approximation space defined on the moving mesh. A priori error estimates will be stated with respect to the $\mathrm{L}^{\infty}\left(0,T;\mathrm{L}^{2}\left(\Omega\rig...
In this paper we will present and analyse a new class of the IMEX finite volume schemes for the Euler equations with a gravity source term. We will in particular concentrate on a singular limit of weakly compressible flows when the Mach number M ≪ 1. In order to efficiently resolve slow dynamics we split the whole nonlinear system in a stiff linear part governing the acoustic and gravity waves ...
Solutions of Friedrichs systems are in general not of Sobolev regularity and may possess discontinuities along the characteristics of the differential operator. We state a setting in which the well-posedness of Friedrichs systems on polyhedral domains is ensured, while still allowing changes in the inertial type of the boundary. In this framework the discontinuous Galerkin method converges in t...
In this paper we present a high order weighted essentially non-oscillatory (WENO) scheme for solving a multi-class extension of the Lighthill-Whitham-Richards (LWR) model. We first review the multi-class LWR model and present some of its analytical properties. We then present the WENO schemes, which were originally designed for computational fluid dynamics problems and for solving hyperbolic co...
The initial value problem of convex conservation laws, which includes the famous Burgers’ (inviscid) equation, plays an important rule not only in theoretical analysis for conservation laws, but also in numerical computations for various numerical methods. For example, the initial value problem of the Burgers’ equation is one of the most popular benchmarks in testing various numerical methods. ...
We analyze a hyperbolic system of conservation laws in dimension one, which is a drastic simplification of a multi-phase or multi-velocity fluid model. The domain of hyperbolicity is compact, which is a characteristic of multi-phase models. Our main result is the stability of the domain of hyperbolicity. Due to the degeneracy of the model on the boundary of the hyperbolicity domain, rarefaction...
Astrophysical relativistic flow problems require high resolution three-dimensional numerical simulations. In this paper, we describe a new parallel three-dimensional code for simulations of special relativistic hydrodynamics (SRHD) using both spatially and temporally structured adaptive mesh refinement (AMR). We used the method of lines to discretize the SRHD equations spatially and a total var...
Astrophysical relativistic flow problems require high resolution three-dimensional numerical simulations. In this paper, we describe a new parallel three-dimensional code for simulations of special relativistic hydrodynamics (SRHD) using both spatially and temporally structured adaptive mesh refinement (AMR). We used method of lines to discrete SRHD equations spatially and used a total variatio...
We are interested in the numerical solution of large systems of hyperbolic conservation laws or systems in which the characteristic decomposition is expensive to compute. Solving such equations using finite volumes or Discontinuous Galerkin requires a numerical flux function which solves local Riemann problems at cell interfaces. There are various methods to express the numerical flux function....
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید