In a 2002 paper, Kirkland showed that if T ∈ Rn×n is an irreducible stochastic matrix with stationary distribution vector πT , then for A = I − T , maxj=1,...,n πj‖A j ‖∞ ≥ n−1 n , where Aj , j = 1, . . . , n, are the (n − 1) × (n − 1) principal submatrices of A obtained by deleting the j–th row and column of A. He also conjectured that equality holds in that lower bound if and only if either T...