نتایج جستجو برای: locally compact quantum group
تعداد نتایج: 1405911 فیلتر نتایج به سال:
In the framework of locally covariant quantum field theory, a theory is described as a functor from a category of spacetimes to a category of ∗-algebras. It is proposed that the global gauge group of such a theory can be identified as the group of automorphisms of the defining functor. Consequently, multiplets of fields may be identified at the functorial level. It is shown that locally covaria...
let $pounds$ be the category of locally compact abelian groups and $a,cin pounds$. in this paper, we define component extensions of $a$ by $c$ and show that the set of all component extensions of $a$ by $c$ forms a subgroup of $ext(c,a)$ whenever $a$ is a connected group. we establish conditions under which the component extensions split and determine lca groups which are component projective. ...
Given a (reduced) locally compact quantum group A, we can consider the convolution algebra L(A) (which can be identified as the predual of the von Neumann algebra form of A). It is conjectured that L(A) is operator biprojective if and only if A is compact. The “only if” part always holds, and the “if” part holds for Kac algebras. We show that if the splitting morphism associated with L(A) being...
in this paper, we introduce a notion of property (t) for a c∗-dynamical system (a, g, α) consisting of a unital c∗-algebra a,a locally compact group g, and an action α on a. as a result,we show that if a has strong property (t) and g has kazhdan’sproperty (t), then the triple (a, g, α) has property (t).
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
In this paper, we investigate the concept of topological stationary for locally compact semigroups. In [4], T. Mitchell proved that a semigroup S is right stationary if and only if m(S) has a left Invariant mean. In this case, the set of values ?(f) where ? runs over all left invariant means on m(S) coincides with the set of constants in the weak* closed convex hull of right translates of f. Th...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید