نتایج جستجو برای: means clustering algorithm
تعداد نتایج: 1128494 فیلتر نتایج به سال:
The K-Means Clustering Approach is one of main algorithms in the literature of Pattern recognition and Machine Learning. Yet, due to the random selection of cluster centers and the adherence of results to initial cluster centers, the risk of trapping into local optimality ever exists. In this paper, inspired by a genetic algorithm which is based on the K-means method , a new approach is develop...
and showed the solution G is the leading eigenvectors of the symmetric positive semi definite matrix K. When K = AA> (sample covariance matrix) with A = [x1, ...,xm], xi ∈ Rn, those eigenvectors form a basis to a k-dimensional subspace of Rn which is the closest (in L2 norm sense) to the sample points xi. The axes (called principal axes) g1, ...,gk preserve the variance of the original data in ...
Despite its simplicity and its linear time, a serial K-means algorithm's time complexity remains expensive when it is applied to a problem of large size of multidimensional vectors. In this paper we show an improvement by a factor of O(K/2), where K is the number of desired clusters, by applying theories of parallel computing to the algorithm. In addition to time improvement, the parallel versi...
In most traditional techniques of document clustering, the number of total clusters is not known in advance and the cluster that contains the target information or précised information associated with the cluster cannot be determined. This problem solved by Kmeans algorithm. By providing the value of no. of cluster k. However, if the value of k is modified, the precision of each result is also ...
nThis paper transmits a FORTRAN-IV coding of the fuzzy c-means (FCM) clustering program. The FCM program is applicable to a wide variety of geostatistical data analysis problems. This program generates fuzzy partitions and prototypes for any set of numerical data. These partitions are useful for corroborating known substructures or suggesting substructure in unexplored data. The clustering crit...
The traditional clustering algorithm, K-means, is famous for its simplicity and low time complexity. However, the usability of K-means is limited by its shortcoming that the clustering result is heavily dependent on the user-defined variants, i.e., the selection of the initial centroid seeds and the number of clusters (k). A new clustering algorithm, called K-means+, is proposed to extend K-mea...
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
We present a new clustering algorithm called k-means-u* which in many cases is able to significantly improve the clusterings found by k-means++, the current de-facto standard for clustering in Euclidean spaces. First we introduce the k-means-u algorithm which starts from a result of k-means++ and attempts to improve it with a sequence of non-local “jumps” alternated by runs of standard k-means....
The k-means++ seeding algorithm is one of the most popular algorithms that is used for finding the initial k centers when using the k-means heuristic. The algorithm is a simple sampling procedure and can be described as follows: Pick the first center randomly from the given points. For i > 1, pick a point to be the i center with probability proportional to the square of the Euclidean distance o...
The K-means clustering algorithm is an old algorithm that has been intensely researched owing to its simplicity of implementation. However, there have also been criticisms on its performance, in particular, for demanding the value of K a priori. It is evident from previous researches that providing the number of clusters a priori does not in any way assist in the production of good quality clus...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید