نتایج جستجو برای: meshless methods
تعداد نتایج: 1875067 فیلتر نتایج به سال:
Kernels are valuable tools in various fields of Numerical Analysis, including approximation, interpolation, meshless methods for solving partial differential equations, neural networks, and Machine Learning. This contribution explains why and how kernels are applied in these disciplines. It uncovers the links between them, as far as they are related to kernel techniques. It addresses non-expert...
The partition of unity is an essential ingredient for meshless methods named by GFEM, PUFEM (partition of unity FEM), XFEM(extended FEM), RKPM(reproducing kernel particle method), RPPM(reproducing polynomial particle method), the method of clouds in the literature. There are two popular choices for partition of unity: a piecewise linear FEM mesh and the Shepard-type partition of unity. However,...
This is the second in a series of two papers generated from a study on probabilistic meshless analysis of cracks. In this paper, a stochastic meshless method is presented for probabilistic fracture-mechanics analysis of linear-elastic cracked structures. The method involves an element-free Galerkin method for calculating fracture response characteristics; statistical models of uncertainties in ...
Meshless methods have been extensively popularized in literature in recent years, due to their flexibility in solving boundary value problems. The meshless local Petrov-Galerkin(MLPG) method for solving the bending problem of the thin plate is presented and discussed in the present paper. The method uses the moving least-squares approximation to interpolate the solution variables, and employs a...
In recent years, a variety of meshless methods have been developed to solve partial differential equations in complex domains. Meshless discretize the over scattered points instead grids. Radial basis functions (RBFs) popularly used as high accuracy interpolants function values at locations. this paper, we apply polyharmonic splines (PHS) RBF together with appended polynomial and heat conductio...
This paper first provides a common framework for partial differential equation problems in both strong and weak form by rewriting them as generalized interpolation problems. Then it is proven that any well–posed linear problem in strong or weak form can be solved by certain meshless kernel methods to any prescribed accuracy. AMS Subject Classification: 35A25, 65N35
The finite element method (FEM) has been commonly employed in a variety of fields as a computer simulation method to solve such problems as solid, fluid, electro-magnetic phenomena and so on. However, creation of a quality mesh for the problem domain is a prerequisite when using FEM, which becomes a major part of the cost of a simulation. It is natural that the concept of meshless method has ev...
The general Meshless Local Petrov-Galerkin (MLPG) type weak-forms of the displacement & traction boundary integral equations are presented, for solids undergoing small deformations. Using the directly derived non-hyper singular integral equations for displacement gradients, simple and straight-forward derivations of weakly singular traction BIE's for solids undergoing small deformations are als...
This paper presents a new approach based on the meshless local Petrov–Galerkin (MLPG) and collocation methods to treat the parabolic partial differential equations with non-classical boundary conditions. In the presented method, the MLPG method is applied to the interior nodes while the meshless collocation method is applied to the nodes on the boundaries, and so the Dirichlet boundary conditio...
Boundary value problems on local spherical regions arise naturally in geophysics and oceanography when scientists model a physical quantity on large scales. Meshless methods using radial basis functions (rbfs) provide a simple way to construct numerical solutions with high accuracy. However, the linear systems arising from these methods are usually ill-conditioned, which poses a challenge for i...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید