نتایج جستجو برای: multiscale analysis
تعداد نتایج: 2836988 فیلتر نتایج به سال:
Abstract. This paper presents the multiscale analysis and computation for parabolic equations with rapidly oscillating coefficients in general domains. The major contributions of this study are twofold. First, we define the boundary layer solution and the convergence rate with ε1/2 for the multiscale asymptotic solutions in general domains. Secondly, a highly accurate computational algorithm is...
A computational homogenization procedure for a material layer that possesses an underlying heterogeneous microstructure is introduced within the framework of finite deformations. The macroscopic material properties of the material layer are obtained from multiscale considerations. At the macro level, the layer is resolved as a cohesive interface situated within a continuum, and its underlying m...
We propose and analyze a goal-oriented a posteriori error estimator for the atomisticcontinuum modeling error in the quasicontinuum method. Based on this error estimator, we develop an algorithm which adaptively determines the atomistic and continuum regions to compute a quantity of interest to within a given tolerance. We apply the algorithm to the computation of the structure of a crystallogr...
We present numerical enhancements of a multiscale domain decomposition strategy based on a LaTIn solver and dedicated to the computation of the debounding in laminated composites. We show that the classical scale separation is irrelevant in the process zones, which results in a drop in the convergence rate of the strategy. We show that performing nonlinear subresolutions in the vicinity of the ...
The Asymptotic Expansion Homogenization (AEH) is a multiscale technique applied to estimate effective properties of heterogeneous media with periodic structure. The main advantages of AEH are the reduction of the problem size and the ability to employ an homogenized property that keeps information from the heterogeneous microstructure. The aim of this work is to develop a parallel program that ...
Accurate simulation of subsurface flow with detailed geologic description is of great academic and industrial interest. Fully fine-scale simulation is usually too expensive. The multiscale method is developed to capture fine-scale information without solving fine-scale equations. It is more efficient than fine-scale simulation methods and more accurate than traditional upscaling techniques. Pre...
In this paper we consider the multiscale computation of a Steklov eigenvalue problem with rapidly oscillating coefficients. The new contribution obtained in this paper is a superapproximation estimate for solving the homogenized Steklov eigenvalue problem and to present a multiscale numerical method. Numerical simulations are then carried out to validate the theoretical results reported in the ...
In this work, the multiscale problem of modeling fluctuations in boundary layers in stochastic elliptic partial differential equations is solved by homogenization. A homogenized equation for the covariance of the solution of stochastic elliptic PDEs is derived. In addition to the homogenized equation, a rate for the covariance and variance as the cell size tends to zero is given. For the homoge...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید