Roitman's combinatorial principle $\Delta$ is equivalent to monotone normality of the nabla product, $\nabla (\omega +1)^\omega$. If $\{ X_n : n\in \omega\}$ a family metrizable spaces and $\nabla_n X_n$ monotonically normal, then hereditarily paracompact. Hence, if holds box product $\square +1)^\omega$ Large fragments hold in $\mathsf{ZFC}$, yielding large subspaces (\omega+1)^\omega$ that ar...