نتایج جستجو برای: parp inhibitors
تعداد نتایج: 192891 فیلتر نتایج به سال:
Poly(ADP-ribose) polymerase (PARP) plays a crucial role in DNA repair. Modulation of its activity by stimulation or inhibition is considered as a potentially important strategy in clinical practice, especially to sensitize tumor cells to chemo- and radiotherapy through inhibition of DNA repair. Here we studied the effect of the three PARP inhibitors, 5-iodo-6-amino-benzopyrone (INH(2)BP), 1,5-i...
Inhibitors of poly(ADP-ribose) polymerases (PARPs), which play a key role in DNA damage/repair pathways, have been developed as antitumor agents based on the concept of synthetic lethality. Synthetic lethality is the idea that cell death would be efficiently induced by simultaneous loss of function of plural key molecules, for example, by exposing tumor cells with inactivating gene mutation of ...
Potent poly(ADP-ribose) polymerase (PARP) inhibitors have been developed that potentiate the cytotoxicity of ionizing radiation and anticancer drugs. The biological effects of two novel PARP inhibitors, NU1025 (8-hydroxy-2-methylquinazolin-4-[3H]one, Ki = 48 nM) and NU1085 [2-(4-hydroxyphenyl)benzamidazole-4-carboxamide, Ki = 6 nM], in combination with temozolomide (TM) or topotecan (TP) have b...
Personalized medicine seeks to utilize targeted therapies with increased selectivity and efficacy in preselected patient cohorts. One such molecularly targeted therapy is enabled by inhibiting the enzyme poly(ADP-ribose) polymerase (PARP) by small molecule inhibitors in tumors which have a defect in the homologous DNA recombination pathway, most characteristically due to BRCA mutations. Olapari...
Recent data have identified STAG2, a core subunit of the multifunctional cohesin complex, as a highly recurrently mutated gene in several types of cancer. We sought to identify a therapeutic strategy to selectively target cancer cells harboring inactivating mutations of STAG2 using two independent pairs of isogenic glioblastoma cell lines containing either an endogenous mutant STAG2 allele or a...
Poly-(ADP-ribose) polymerase (PARP) inhibitors act through synthetic lethality in cells with defects in homologous recombination (HR) DNA repair caused by molecular aberrations such as BRCA mutations, and is approved for treatment in ovarian cancer, with promising clinical activity against other HR defective tumors including breast and prostate cancers. Three PARP inhibitors have been FDA appro...
Poly-ADP ribose polymerase (PARP) inhibitors have shown promise in the treatment of human malignancies characterized by deficiencies in the DNA damage repair proteins BRCA1 and BRCA2 and preclinical studies have demonstrated the potential effectiveness of PARP inhibitors in targeting ataxia-telangiectasia mutated (ATM)-deficient tumours. Here, we show that mantle cell lymphoma (MCL) cells defic...
HER2 overexpression in breast cancer confers increased tumor aggressiveness. Although anti-HER2 therapies have improved patient outcome, resistance ultimately occurs. PARP inhibitors target homologous recombination (HR)-deficient tumors, such as the BRCA-associated breast and ovarian cancers. In this study, we show that HER2+ breast cancers are susceptible to PARP inhibition independent of an H...
CHK2 is a checkpoint kinase involved in the ATM-mediated response to double-strand DNA breaks. Its potential as a drug target is still unclear, but inhibitors of CHK2 may increase the efficacy of genotoxic cancer therapies in a p53 mutant background by eliminating one of the checkpoints or DNA repair pathways contributing to cellular resistance. We report here the identification and characteriz...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید