نتایج جستجو برای: projective and injective modules
تعداد نتایج: 16840282 فیلتر نتایج به سال:
let $mathcal {a}$ be an abelian category with enough projective objects and $mathcal {x}$ be a full subcategory of $mathcal {a}$. we define gorenstein projective objects with respect to $mathcal {x}$ and $mathcal{y}_{mathcal{x}}$, respectively, where $mathcal{y}_{mathcal{x}}$=${ yin ch(mathcal {a})| y$ is acyclic and $z_{n}yinmathcal{x}}$. we point out that under certain hypotheses, these two g...
The concept of the homotopy theory of modules was discovered by Peter Hilton as a result of his trip in 1955 to Warsaw, Poland, to work with Karol Borsuk, and to Zurich, Switzerland, to work with Beno Eckmann. The idea was to produce an analog of homotopy theory in topology. Yet, unlike homotopy theory in topology, there are two homotopy theories of modules, the injective theory, πn(A,B), and t...
$R$-module. In this paper, we explore more properties of $Max$-injective modules and we study some conditions under which the maximal spectrum of $M$ is a $Max$-spectral space for its Zariski topology.
The notion of simple-direct-injective modules which are a generalization injective unifies $C2$ and $C3$-modules. In the present paper, we introduce semisimple-direct-injective module gives unified viewpoint $C2$, $C3$, SSP properties modules. It is proved that ring $R$ Artinian serial with Jacobson radical square zero if only every right $R$-module has and, for any family simple $R$-modules $\...
we introduce the class of “right almost v-rings” which is properly between the classes of right v-rings and right good rings. a ring r is called a right almost v-ring if every simple r-module is almost injective. it is proved that r is a right almost v-ring if and only if for every r-module m, any complement of every simple submodule of m is a direct summand. moreover, r is a right almost v-rin...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید