نتایج جستجو برای: ricci semisymmetric

تعداد نتایج: 4973  

2009
Shijin Zhang

In this note, we obtain a sharp volume estimate for complete gradient Ricci solitons with scalar curvature bounded below by a positive constant. Using Chen-Yokota’s argument we obtain a local lower bound estimate of the scalar curvature for the Ricci flow on complete manifolds. Consequently, one has a sharp estimate of the scalar curvature for expanding Ricci solitons; we also provide a direct ...

Journal: :Experimental Mathematics 2005
J. Hyam Rubinstein Robert Sinclair

We present numerical visualizations of Ricci Flow of surfaces and 3-dimensional manifolds of revolution. Ricci rot is an educational tool which visualizes surfaces of revolution moving under Ricci flow. That these surfaces tend to remain embedded in R3 is what makes direct visualization possible. The numerical lessons gained in developing this tool may be applicable to numerical simulation of R...

2007
GANG TIAN XIAOHUA ZHU

In this paper, we prove a theorem on convergence of Kähler-Ricci flow on a compact Kähler manifold M which admits a Kähler-Ricci soliton. A Kähler metric h is called a Kähler-Ricci soliton if its Kähler form ωh satisfies equation Ric(ωh)− ωh = LXωh, where Ric(ωh) is the Ricci form of h and LXωh denotes the Lie derivative of ωh along a holomorphic vector field X on M . As usual, we denote a Kähl...

2000
Ali Kaya

In a recent paper, we have pointed out a relation between the Killing spinor and Einstein equations. Using this relation, new brane solutions of D = 11 and D = 10 type IIB supergravity theories are constructed. It is shown that in a brane solution, the flat world-volume directions, the smeared transverse directions and the sphere located at a fixed radial distance can be replaced with any Loren...

2008
Sergiu I. Vacaru

This is the second paper in a series of works devoted to nonholonomic Ricci flows. By imposing non–integrable (nonholonomic) constraints on the Ricci flows of Riemannian metrics we can model mutual transforms of generalized Finsler–Lagrange and Riemann geometries. We verify some assertions made in the first partner paper and develop a formal scheme in which the geometric constructions with Ricc...

2017
JAMES ISENBERG DAN KNOPF

We investigate Riemannian (non-Kähler) Ricci flow solutions that develop finite-time Type-I singularities with the property that parabolic rescalings at the singularities converge to singularity models taking the form of shrinking Kähler–Ricci solitons. More specifically, the singularity models for these solutions are given by the “blowdown soliton” discovered in [FIK03]. Our results support th...

2010
Bing Wang

In this paper, we study the behavior of Ricci flows on compact orbifolds with finite singularities. We show that Perelman’s pseudolocality theorem also holds on orbifold Ricci flow. Using this property, we obtain a weak compactness theorem of Ricci flows on orbifolds under some natural technical conditions. This generalizes the corresponding theorem on manifolds. As an application, we can use K...

2012
C. S. BAGEWADI GURUPADAVVA INGALAHALLI

We study Ricci solitons in Lorentzian α-Sasakian manifolds. It is shown that a symmetric parallel second order covariant tensor in a Lorentzian α-Sasakian manifold is a constant multiple of the metric tensor. Using this it is shown that if LV g + 2S is parallel, V is a given vector field then (g, V ) is Ricci soliton. Further, by virtue of this result Ricci solitons for (2n + 1)-dimensional Lor...

2009
Andrea Fuster Laura Astola Luc Florack

We study a well-known scalar quantity in Riemannian geometry, the Ricci scalar, in the context of diffusion tensor imaging (DTI), which is an emerging non-invasive medical imaging modality. We derive a physical interpretation for the Ricci scalar and explore experimentally its significance in DTI. We also extend the definition of the Ricci scalar to the case of high angular resolution diffusion...

2009
Xiuxiong Chen Bing Wang

We study the evolution of anticanonical line bundles along the Kähler Ricci flow. We show that under some conditions, the convergence of Kähler Ricci flow is determined by the properties of the anticanonical divisors of M . As examples, the Kähler Ricci flow on M converges when M is a Fano surface and c 1 (M) = 1 or c 1 (M) = 3. Combined with the work in [CW1] and [CW2], this gives a Ricci flow...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید