نتایج جستجو برای: signed roman k dominating function
تعداد نتایج: 1571544 فیلتر نتایج به سال:
The in-neighborhood, I(v), of a vertex v in a digraph D=(V, A) is v together with the set of all vertices sending an arc to v, i.e., vertices u such that (u, v) # A. A subset of V is called dominating if it meets I(v) for every v # V. (To avoid confusion, it must be noted that some authors require in the definition meeting every out-neighborhood.) A set of vertices is called independent if no t...
Let be a simple graph with vertex set and edge set . Let have at least vertices of degree at least , where and b are positive integers. A function is said to be a signed -edge cover of G if G ( ) V G ( ) e E v ( ) E G G : ( f E k b k ) { 1,1} G ( , ) b k ( ) f e b for at least vertices of , where . The value k v G ( ) = {uv E( ( ) E v G u N v ) | } ( ) min ( ) G e E f e , taki...
For a positive integer k, a k-rainbow dominating function of a graph G is a function f from the vertex set V (G) to the set of all subsets of the set {1, 2, . . . , k} such that for any vertex v ∈ V (G) with f(v) = ∅ the condition ⋃ u∈N(v) f(u) = {1, 2, . . . , k} is fulfilled, where N(v) is the neighborhood of v. The 1-rainbow domination is the same as the ordinary domination. A set {f1, f2, ....
In this paper, we study the Dominating Set problem in random graphs. In a random graph, each pair of vertices are joined by an edge with a probability of p, where p is a positive constant less than 1. We show that, given a random graph in n vertices, a minimum dominating set in the graph can be computed in expected 2 2 2 n) time. For the parameterized dominating set problem, we show that it can...
A 2-rainbow dominating function ( ) of a graph is a function from the vertex set to the set of all subsets of the set such that for any vertex with the condition is fulfilled, where is the open neighborhood of . A maximal 2-rainbow dominating function on a graph is a 2-rainbow dominating function such that the set is not a dominating set of . The weight of a maximal is the value . ...
Let D be a finite simple directed graph with vertex set V(D) and arc set A(D). A function ( ) { } − : 1,1 f V D → is called a signed dominating function (SDF) if [ ] ( ) 1 D f N v − ≥ for each vertex v V ∈ . The weight ( ) f ω of f is defined by ( ) ∑ v V f v ∈ . The signed domination number of a digraph D is ( ) ( ) { } γ ω = min is an SDF of s D f f D . Let Cm × Cn denotes the cartesian produ...
A problem open for many years is whether there is an FPT algorithm that given a graph G and parameter k, either: (1) determines that G has no k-Dominating Set, or (2) produces a dominating set of size at most g(k), where g(k) is some fixed function of k. Such an outcome is termed an FPT approximation algorithm. We describe some results that begin to provide some answers. We show that there is n...
A function f de1ned on the vertices of a graph G = (V; E); f :V → {−1; 0; 1} is a minus dominating function if the sum of its values over any closed neighborhood is at least one. The weight of a minus dominating function is f(V ) = ∑ v∈V f(v). The minus domination number of a graph G, denoted by −(G), equals the minimum weight of a minus dominating function of G. In this paper, a sharp lower bo...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید