نتایج جستجو برای: skew equienergetic digraphs
تعداد نتایج: 14357 فیلتر نتایج به سال:
We introduce adequate concepts of expansion of a digraph to obtain a sequential construction of minimal strong digraphs. We obtain a characterization of the class of minimal strong digraphs whose expansion preserves the property of minimality. We prove that every minimal strong digraph of order n > 2 is the expansion of a minimal strong digraph of order n — \ and we give sequentially generative...
The conventional binary operations of cartesian product, conjunction, and composition of two digraphs D, and D2 are observed to give the sum, the product, md a more complicated combination of the spectra of D1 and Dz as the resulting spectrum. These formulas for analyzing the spectrum of a digraph are utilized to construct for any positive integer PI, a collection of n nonisomorphic strung regu...
We provide a new proof of a theorem of Saks which is an extension of Greene’s Theorem to acyclic digraphs, by reducing it to a similar, known extension of Greene and Kleitman’s Theorem. This suggests that the Greene-Kleitman Theorem is stronger than Greene’s Theorem on posets. We leave it as an open question whether the same holds for all digraphs, that is, does Berge’s conjecture concerning pa...
Primitive digraphs on n vertices with exponents at least b!n=2c + 2, where !n = (n 1) + 1, are considered. For n 3, all such digraphs containing a Hamilton cycle are characterized; and for n 6, all such digraphs containing a cycle of length n 1 are characterized. Each eigenvalue of any stochastic matrix having a digraph in one of these two classes is proved to be geometrically simple.
Min-Max orderings correspond to conservative lattice polymorphisms. Digraphs with Min-Max orderings have polynomial time solvable minimum cost homomorphism problems. They can also be viewed as digraph analogues of proper interval graphs and bigraphs. We give a forbidden structure characterization of digraphs with a Min-Max ordering which implies a polynomial time recognition algorithm. We also ...
The eigenvalues of a digraph are the eigenvalues of its adjacency matrix. The sum of the absolute values of the real part of the eigenvalues is called the energy of the digraph. The extremal energy of bicyclic digraphs with vertex-disjoint directed cycles is known. In this paper, we consider a class of bicyclic digraphs with exactly two linear subdigraphs of equal length. We find the minimal an...
Hamidoune’s connectivity results [11] for hierarchical Cayley digraphs are extended to Cayley coset digraphs and thus to arbitrary vertex transitive digraphs. It is shown that if a Cayley coset digraph can be hierarchically decomposed in a certain way, then it is optimally vertex connected. The results are obtained by extending the methods used in [11]. They are used to show that cycle-prefix g...
In this paper, we give two constructions of weakly distance-regular digraphs of girth 2, and prove that certain quotient digraph of a commutative weakly distancetransitive digraph of girth 2 is a distance-transitive graph. As an application of the result, we not only give some constructions of weakly distance-regular digraphs which are not weakly distance-transitive, but determine a special cla...
let $g$ be a simple graph, and $g^{sigma}$ be an oriented graph of $g$ with the orientation $sigma$ and skew-adjacency matrix $s(g^{sigma})$. the $k-$th skew spectral moment of $g^{sigma}$, denoted by $t_k(g^{sigma})$, is defined as $sum_{i=1}^{n}( lambda_{i})^{k}$, where $lambda_{1}, lambda_{2},cdots, lambda_{n}$ are the eigenvalues of $g^{sigma}$. suppose $g^{sigma...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید