نتایج جستجو برای: spions
تعداد نتایج: 401 فیلتر نتایج به سال:
Cancer is a leading cause of death worldwide and it is caused by the interaction of genomic, environmental, and lifestyle factors. Although chemotherapy is one way of treating cancers, it also damages healthy cells and may cause severe side effects. Therefore, it is beneficial in drug delivery in the human body to increase the proportion of the drugs at the target site while limiting its exposu...
Targeted delivery of cells and therapeutic agents would benefit a wide range of biomedical applications by concentrating the therapeutic effect at the target site while minimizing deleterious effects to off-target sites. Magnetic cell targeting is an efficient, safe, and straightforward delivery technique. Superparamagnetic iron oxide nanoparticles (SPION) are biodegradable, biocompatible, and ...
In our program to develop non-invasive magnetic resonance imaging (MRI) methods for the diagnosis of Alzheimer's disease (AD), we have synthesized antibody-conjugated, superparamagnetic iron oxide nanoparticles (SPIONs) for use as an in vivo agent for MRI detection of amyloid-β plaques in AD. Here we report studies in AβPP/PS1 transgenic mice, which demonstrate the ability of novel anti-AβPP co...
Magnetic hyperthermia (MH) harnesses the heat-releasing properties of superparamagnetic iron oxide nanoparticles (SPIONs) and has potential to stimulate immune activation in tumor microenvironment whilst sparing surrounding normal tissues. To assess feasibility localized MH vivo, SPIONs are injected intratumorally their fate tracked by Zirconium-89-positron emission tomography, histological ana...
Conflict of interests: none. ABSTRACT Objective: The aim of the current study was to monitor the migration of superparamagnetic iron oxide nanoparticle (SPION)-labeled C6 cells, which were used to induce glioblastoma tumor growth in an animal model, over time using magnetic resonance imaging (MRI), with the goal of aiding in tumor prognosis and therapy. Methods: Two groups of male Wistar rats w...
To avoid donor tissue shortages, ex vivo cultured human corneal endothelial cell (HCEC) transplantation is a promising therapeutic resource. Superparamagnetic iron oxide nanoparticle (SPION) cell labeling assists HCEC transplantation by attaching the posterior corneal stroma in ex vivo animal models. However, possible functional changes of the HCECs following SPION labeling remain to be determi...
BACKGROUND We designed dual-functional nanoparticles for in vivo application using a modified electrostatic and covalent layer-by-layer assembly strategy to address the challenge of assessment and treatment of hormone-refractory prostate cancer. METHODS Core-shell nanoparticles were formulated by integrating three distinct functional components, ie, a core constituted by poly(D,L-lactic-co-gl...
We report the development, experimental verification, and application of a general theory called [Fe]MRI (pronounced fem-ree) for the non-invasive, quantitative molecular magnetic resonance imaging (MRI) of added magnetic nanoparticles or other magnetic contrast agents in biological tissues and other sites. [Fe]MRI can easily be implemented on any MRI instrument, requiring only measurements of ...
Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted great attention in many biomedical fields and are used in preclinical/experimental drug delivery, hyperthermia and medical imaging. In this study, biocompatible magnetite drug carriers, stabilized by a dextran shell, were developed to carry tissue plasminogen activator (tPA) for targeted thrombolysis under an external magnetic f...
Superparamagnetic Iron Oxide Nanoparticles (SPIONs) have shown great potential for being utilized in Nanocarriers (NCs) applications throughout the Drug Delivery System (DDS). However, there are several obstacles to make a practical magnetic NCs, such as low dispersity and high toxicity biological systems, also surface area drug loading. In this work, NCs been synthesized through facile three-s...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید