نتایج جستجو برای: symmetric polynomial
تعداد نتایج: 173437 فیلتر نتایج به سال:
A classical theorem of MacMahon states that the number of lozenge tilings of any centrally symmetric hexagon drawn on the triangular lattice is given by a beautifully simple product formula. In this paper, we present a counterpart of this formula, corresponding to the exterior of a concave hexagon obtained by turning 120° after drawing each side (MacMahon’s hexagon is obtained by turning 60° af...
A hierarchy of pairwise commuting Hamiltonians for the quantum periodic Benjamin–Ono equation is constructed by using the Lax matrix. The eigenvectors of these Hamiltonians are Jack symmetric functions of infinitely many variables x1, x2, . . .. This construction provides explicit expressions for the Hamiltonians in terms of the power sum symmetric functions pn = x n 1 + x n 2 + · · · and is ba...
In this paper we present a theoretical construction of Rotation Symmetric Boolean Functions (RSBFs) on odd number of variables with maximum possible AI and further these functions are not symmetric. Our RSBFs are of better nonlinearity than the existing theoretical constructions with maximum possible AI . To get very good nonlinearity, which is important for practical cryptographic design, we g...
We prove an explicit combinatorial formula for the structure constants of the Grothendieck ring of a Grassmann variety with respect to its basis of Schubert structure sheaves. We furthermore relate K-theory of Grassmannians to a bialgebra of stable Grothendieck polynomials, which is a K-theory parallel of the ring of symmetric functions.
The usual, or type An, Tamari lattice is a partial order on T A n , the triangulations of an (n+3)-gon. We define a partial order on T B n , the set of centrally symmetric triangulations of a (2n + 2)-gon. We show that it is a lattice, and that it shares certain other nice properties of the An Tamari lattice, and therefore that it deserves to be considered the Bn Tamari lattice. We define a bij...
Let K, D be convex centrally symmetric bodies in R. Let k < n and let dk(K, D) be the smallest Banach–Mazur distance between k-dimensional sections of K and D. Define ∆(k, n) = sup dk(K, D), where the supremum is taken over all n−dimensional convex symmetric bodies K, D. We prove that for any k < n ∆(k, n) ∼log n {√ k if k ≤ n k2 n if k > n , where A ∼log n B means that 1/(C log n) ·A ≤ B ≤ (C ...
We give a bijection between partially directed paths in the symmetric wedge y = ±x and matchings, which sends north steps to nestings. This gives a bijective proof of a result of Prellberg et al. that was first discovered through the corresponding generating functions: the number of partially directed paths starting at the origin confined to the symmetric wedge y = ±x with k north steps is equa...
We consider symmetric (as well as multi-symmetric) real algebraic varieties and semi-algebraic sets, as well as symmetric complex varieties in affine and projective spaces, defined by polynomials of fixed degrees. We give polynomial (in the dimension of the ambient space) bounds on the number of irreducible representations of the symmetric group which acts on these sets, as well as their multip...
Abstract We develop a theory of two-parameter quantum polynomial functors. Similar to how (strict) functors give new interpretation representations the general linear groups GL n , (polynomial) symmetric pair ( $$ {U}_{Q,q}^B U Q , q ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید