نتایج جستجو برای: uniformly convex hyperbolic spaces
تعداد نتایج: 233700 فیلتر نتایج به سال:
There are three main observations which make up the proof. The first observation, discussed in Section 2, is that convex co-compact subgroups of a fundamental group of a hyperbolic 3-manifold N persist in the approximates given by hyperbolic Dehn surgery. This result is stated formally as Proposition 2.1. The second observation, discussed in Section 4, is that a collection of distinct hyperboli...
We prove strong convergence theorem for infinite family of uniformly L−Lipschitzian total quasi-φ-asymptotically nonexpansive multi-valued mappings using a generalized f−projection operator in a real uniformly convex and uniformly smooth Banach space. The result presented in this paper improve and unify important recent results announced by many authors.
In general, the Gelfand widths cn(T ) of a map T between Banach spaces X and Y are not equivalent to the Gelfand numbers cn(T ) of T . We show that cn(T ) = cn(T ) (n ∈ N) provided that X and Y are uniformly convex and uniformly smooth, and T has trivial kernel and dense range. c ⃝ 2012 Elsevier Inc. All rights reserved.
Scattering poles for a convex obstacle in the Euclidean space have been extensively studied starting with the work of Watson ’18, with more recent results by Hargé–Lebeau ’94 , Sjöstrand–Zworski ’99 and Jin ’15. In contrast, practically nothing is known for the same problem in hyperbolic space. I will explain the difficulties involved in that and use them as a platform to present a modified ver...
Introduction. This paper contains the first unified treatment of the dual theory of differentiability of the norm functional in a real normed linear space. With this, the work of Smulian [2; 3] is extended and it is shown how uniform convexity is to be modified so as to obtain geometric properties dual to the various types of differentiability of the norm thus answering a question implicit in t...
Constructive properties of uniform convexity, strict convexity, near convexity, and metric convexity in real normed linear spaces are considered. Examples show that certain classical theorems, such as the existence of points of osculation, are constructively invalid. The methods used are in accord with principles introduced by Errett Bishop.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید