Given a bounded strongly pseudoconvex domain D in C with smooth boundary, we characterize (p, q, α)-Bergman Carleson measures for 0 < p < ∞, 0 < q < ∞, and α > −1. As an application, we show that the Bergman space version of the balayage of a Bergman Carleson measure on D belongs to BMO in the Kobayashi metric.