نتایج جستجو برای: whisker deprivation
تعداد نتایج: 30873 فیلتر نتایج به سال:
The effect of innocuously biasing the flow of sensory activity from the whiskers for periods of 3-30 d in awake, behaving adult rats on the receptive field organization of rat SI barrel cortex neurons was studied. One pair of adjacent whiskers, D2 and either D1 or D3, remained intact unilaterally (whisker pairing), all others being trimmed throughout the period of altered sensation. Receptive f...
Chronic stimulation of a mystacial whisker follicle for 24h induces structural and functional changes in layer IV of the corresponding barrel, with an insertion of new inhibitory synapses on spines and a depression of neuronal responses to the stimulated whisker (Knott et al. 2002). Under urethane anaesthesia, we analyzed how sensory responses of single units are affected in layer IV and layers...
Rats rhythmically sweep their whiskers over object features, generating sequential deflections of whisker arcs. Such moving wavefronts of whisker deflection are likely to be fundamental elements of natural somatosensory input. To determine how moving wavefronts are represented in somatosensory cortex (S1), we measured single- and multiunit neural responses in S1 of anesthetized rats to moving w...
Rats discriminate surface textures using their whiskers (vibrissae), but how whiskers extract texture information, and how this information is encoded by the brain, are not known. In the resonance model, whisker motion across different textures excites mechanical resonance in distinct subsets of whiskers, due to variation across whiskers in resonance frequency, which varies with whisker length....
The dorsolateral striatum (DLS) is critical for executing sensorimotor behaviors that depend on stimulus-response (S-R) associations. In rats, the DLS receives it densest inputs from primary somatosensory (SI) cortex, but it also receives substantial input from the thalamus. Much of rat DLS is devoted to processing whisker-related information, and thalamic projections to these whisker-responsiv...
Classical studies of mammalian movement control define a prominent role for the primary motor cortex. Investigating the mouse whisker system, we found an additional and equally direct pathway for cortical motor control driven by the primary somatosensory cortex. Whereas activity in primary motor cortex directly evokes exploratory whisker protraction, primary somatosensory cortex directly drives...
Our sense of touch provides information about nearby objects that can affect us in an immediate way. Texture, a central component of touch, is sensed quickly, even before an object is explored to measure its size, shape, or identity. To learn how contact with a surface produces a sensation of texture, many laboratories have examined the whisker system of rodents. Touch sensed through the whiske...
It has been recently shown in rats that spontaneous movements of whisker pad macrovibrissae elicited evoked responses in the trigeminal mesencephalic nucleus (Me5). In the present study, electrophysiological and neuroanatomical experiments were performed in anesthetized rats to evaluate whether, besides the whisker displacement per se, the Me5 neurons are also involved in encoding the kinematic...
Spontaneous activity in the sensory periphery drives infant brain activity and is thought to contribute to the formation of retinotopic and somatotopic maps. In infant rats during active (or REM) sleep, brainstem-generated spontaneous activity triggers hundreds of thousands of skeletal muscle twitches each day; sensory feedback from the resulting limb movements is a primary activator of forebra...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید