نتایج جستجو برای: نوسانگر hopf
تعداد نتایج: 9201 فیلتر نتایج به سال:
Connes and Kreimer have discovered the Hopf algebra structure behind the renormalization of Feynman integrals. We generalize the Hopf algebra to the case of ribbon graphs, i.e. to the case of theories with matrix fields. The Hopf algebra is naturally defined in terms of surfaces corresponding to ribbon graphs. As an example, we discuss the renormalization of Φ4 theory and the 1/N expansion.
We give the classification of (co-)path Hopf algebras and semi-path Hopf algebras with pointed module structures. This leads to the classification of multiple crown algebras and multiple Taft algebras as well as pointed Yetter-Drinfeld kG-modules and their corresponding Nichols algebras. Moreover, we characterize quantum enveloping algebras in terms of semi-path Hopf algebras.
نوسانگر هماهنگ را می توان یکی از مهمترین سیستم ها در مکانیک کوانتومی به شمار آورد که به شکل دقیق قابل بررسی است. در سال 2008 میلادی رائو (rao) و کاگالی (kagali) به ارائه فرمول بندی سازگاری از نوسانگر هماهنگ در مکانیک کوانتومی نسبیتی پرداخته و طیف انرژی و توابع موج معادله کلاین-گوردن وابسته به نوسانگر هماهنگ را در 1+1 بعد فضا-زمان به صورت تحلیلی به دست آوردند. در این پایان نامه ما به مطالعه مکان...
We build, from the collection of all groups of unitriangular matrices, Hopf monoids in Joyal’s category of species. Such structure is carried by the collection of class function spaces on those groups, and also by the collection of superclass function spaces, in the sense of Diaconis and Isaacs. Superclasses of unitriangular matrices admit a simple description from which we deduce a combinatori...
The category of graded, bicommutative Hopf algebras over the prime eld with p elements is an abelian category which is equivalent, by work of Schoeller, to a category of graded modules, known as Dieudonn e modules. Graded ring objects in Hopf algebras are called Hopf rings, and they arise in the study of unstable cohomology operations for extraordinary cohomology theories. The central point of ...
In this paper, we define the higher Frobenius-Schur (FS-)indicators for finite-dimensional modules of a semisimple quasi-Hopf algebra H via the categorical counterpart developed in a 2005 preprint. When H is an ordinary Hopf algebra, we show that our definition coincides with that introduced by Kashina, Sommerhäuser, and Zhu. We find a sequence of gauge invariant central elements of H such that...
The purpose of this paper is to develop a theory of bimonads and Hopf monads on arbitrary categories thus providing the possibility to transfer the essentials of the theory of Hopf algebras in vector spaces to more general settings. There are several extensions of this theory to monoidal categories which in a certain sense follow the classical trace. Here we do not pose any conditions on our ba...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید