In this paper, we investigate the sums of multiple zeta(-star) values height one: $$Z_{\pm }(n)=\sum _{a+b=n} (\pm 1)^b\zeta (\{1\}^a,b+2)$$ , }^{\star ^{\star }(\{1\}^a,b+2)$$ . particular, prove that weighted sum $$\begin{aligned}\sum _{\begin{array}{c} 0\le m\le p\\ m: \mathrm{even} \end{array}} \sum _{\mid \varvec{\alpha }\mid =p+3} 2^{\alpha _{m+1}+1}\zeta (\alpha _0,\alpha _1,\ldots ,\alp...