نتایج جستجو برای: arc transitive graph
تعداد نتایج: 237979 فیلتر نتایج به سال:
It is shown that every connected vertex-transitive graph of order 4p, where p is a prime, is hamiltonian with the exception of the Coxeter graph which is known to possess a Hamilton path. In 1969, Lovász [22] asked if every finite, connected vertex-transitive graph has a Hamilton path, that is, a path going through all vertices of the graph. With the exception of K 2 , only four connected verte...
A characterization is given of a class of edge-transitive Cayley graphs, providing methods for constructing Cayley graphs with certain symmetry properties. Various new half-arc transitive graphs are constructed. © 2004 Elsevier Ltd. All rights reserved.
I describe a 27-vertex graph that is vertex-transitive and edgetransitive but not 1-transitive. Thus while all vertices and edges of this graph are similar, there are no edge-reversing automorphisms. A graph (undirected, without loops or multiple edges) is said to be vertextransitive if its automorphism group acts transitively on the set of vertices, edge-transitive if its automorphism group ac...
The theory of vertex-transitive graphs has developed in parallel with the theory of transitive permutation groups. In this chapter we explore some of the ways the two theories have influenced each other. On the one hand each finite transitive permutation group corresponds to several vertex-transitive graphs, namely the generalised orbital graphs which we shall discuss below. On the other hand, ...
A connguration is weakly ag-transitive if its group of automor-phisms acts intransitively on ags but the group of all automorphisms and anti-automorphisms acts transitively on ags. It is shown that weakly ag-transitive conngurations are in one-to-one correspondence with bipartite 1 2-arc-transitive graphs of girth not less than 6. Several innnite families of weakly ag-transitive conngurations a...
A graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. In this paper, we classifyall the connected cubic symmetric graphs of order $36p$ and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.
A set of vertices $S$ of a graph $G$ is called a fixing set of $G$, if only the trivial automorphism of $G$ fixes every vertex in $S$. The fixing number of a graph is the smallest cardinality of a fixing set. The fixed number of a graph $G$ is the minimum $k$, such that every $k$-set of vertices of $G$ is a fixing set of $G$. A graph $G$ is called a $k$-fixed graph, if its fix...
A transitive orientation of an undirected graph is an assignment of directions to itsedges so that these directed edges represent a transitive relation between the vertices ofthe graph. Not every graph has a transitive orientation, but every graph can be turnedinto a graph that has a transitive orientation, by adding edges. We study the problem ofadding an inclusion minimal set ...
A digraph is said to be super-connected if every minimum vertex cut is the out-neighbor set or in-neighbor set of a vertex. A digraph is said to be reducible, if there are two vertices with the same out-neighbor set or the same in-neighbor set. In this paper, we prove that a strongly connected arc-transitive oriented graph is either reducible or super-connected. Furthermore, if this digraph is ...
A homogeneous factorisation of a graph is a partition of its arc set such that there exist vertex transitive subgroups M < G 6 Aut(Γ) with M fixing each part of the partition setwise and G preserving the partition and transitively permuting the parts. In this paper we study homogeneous factorisations of complete multipartite graphs such that M acts regularly on vertices. We provide a necessary ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید