نتایج جستجو برای: automorphic representation

تعداد نتایج: 237937  

2004
Farrell Brumley

We give a narrow zero-free region for standard L-functions on GL(n) and Rankin-Selberg L-functions on GL(m) × GL(n) through the use of positive Dirichlet series. Such zero-free regions are equivalent to lower bounds on the edge of the critical strip, and in the case of L(s, π × ˜ π), on the residue at s = 1. Using the latter we show that a cuspidal automorphic representation on GL(n) is determi...

2002
Jennifer E. Beineke JENNIFER E. BEINEKE

We obtain special values results for the triple product Lfunction attached to a Hilbert modular cuspidal eigenform over a totally real quadratic number field and an elliptic modular cuspidal eigenform, both of level one and even weight. Replacing the elliptic modular cusp form by a specified Eisenstein series, we renormalize the integral defining the triple product L-function in order to obtain...

2008
C. S. RAJAN

We extend the strong multiplicity one theorem of Jacquet, Piatetski-Shapiro and Shalika. Let π be a unitary, cuspidal, automorphic representation of GLn(AK). Let S be a set of finite places of K, such that the sum ∑ v∈S Nv −2/(n+1) is convergent. Then π is uniquely determined by the collection of the local components {πv | v 6∈ S, v finite} of π. Combining this theorem with base change, it is p...

2008
TERUYOSHI YOSHIDA

Brief introduction to cyclotomic theory over Q using adeles. Discussion of the definitions of modular forms and automorphic forms. Introducing the adelic automorphic forms via strong approximation theorem. Discussion of the connected components of Shimura varieties (modular curves). Smooth/admissible representations of locally finite groups. Definition and admissibility of (cuspidal) automorphi...

2008
D. Constales John Ryan

In this paper we deal with monogenic and k-hypermonogenic automorphic forms on arithmetic subgroups of the Ahlfors-Vahlen group. Monogenic automorphic forms are exactly the 0-hypermonogenic automorphic forms. In the first part we establish an explicit relation to Maaß wave forms. In the second part we introduce Clifford algebra valued k-hypermonogenic cusp forms. We construct k-hypermonogenic P...

2000
HENK BRUIN

We study exactness and maximal automorphic factors of C3 unimodal maps of the interval. We show that for a large class of infinitely renormalizable maps, the maximal automorphic factor is an odometer with an ergodic non-singular measure. We give conditions under which maps with absorbing Cantor sets have an irrational rotation on a circle as a maximal automorphic factor, as well as giving exact...

2013
SAMUEL CASTILLO MANUEL PINTO

We study almost automorphic solutions of recurrence relations with values in a Banach space V for quasilinear almost automorphic difference systems. Its linear part is a constant bounded linear operator Λ defined on V satisfying an exponential dichotomy. We study the existence of almost automorphic solutions of the non-homogeneous linear difference equation and to quasilinear difference equatio...

2014
Paul Garrett

[1] Despite contrary assertions in the literature, rewriting Eisenstein series, as opposed to more general automorphic forms, on adele groups does not use Strong Approximation. Strong Approximation does make precise the relation between general automorphic forms on adele groups and automorphic forms on SL2 and even on SLn, but rewriting these Eisenstein series does not need this comparison. Ind...

2008
S. Lombardo A. V. Mikhailov

We study a new class of infinite dimensional Lie algebras, which has important applications to the theory of integrable equations. The construction of these algebras is very similar to the one for automorphic functions and this motivates the name automorphic Lie algebras. For automorphic Lie algebras we present bases in which they are quasigraded and all structure constants can be written out e...

2006
D. PRASAD

Let E/F be a quadratic extension of number fields. For a cuspidal representation π of SL2(AE), we study in this paper the integral of functions in π on SL2(F)\SL2(AF). We characterize the nonvanishing of these integrals, called period integrals, in terms of π having a Whittaker model with respect to characters of E\AE which are trivial on AF . We show that the period integral in general is not ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید