نتایج جستجو برای: carbon mono oxide
تعداد نتایج: 464891 فیلتر نتایج به سال:
Reductive elimination of carbon-carbon bonds occurs in numerous metal-catalysed reactions. This process is well documented for a variety of transition metal complexes. However, carbon-carbon bond reductive elimination from a limited number of Au(III) complexes has been shown to be a slow and prohibitive process that generally requires elevated temperatures. Herein we show that oxidation of a se...
Carbon nanospheres with distinguishable microstructure were prepared by carbonization and subsequent KOH activation of F108/resorcinol-formaldehyde composites. The dosage of triblock copolymer Pluronic F108 is crucial to the microstructure differences. With the adding of F108, the polydisperse carbon nanospheres (PCNS) with microporous structure, monodisperse carbon nanospheres (MCNS) with hier...
The Concentration of nitric oxide can be monitored by a new device in which the Zeeman effect is used to shift an absorption line of nitric oxide into coincidence with a laser line of carbon monoxide. The absorption is modulated by a small, oscillating magnetic field. This device is specific for nitric oxide and is not subject to interference from other gases.
x-ray photoelectron and high resolution electron energy loss spectroscopic (xps-hreels) studies have shown that the adsorption of carbon dioxide at mg(100) surfaces at 80k is followed by a dissociative reaction leading to the formation of a metastable surface carbonate above 80k. the formation of a carbonate species is proposed to proceed through oxidation of c0 (g) by an active oxygen surface ...
BACKGROUND Sevoflurane and nitrous oxide have intrinsic cerebral vasodilatory activity. To determine the effects of nitrous oxide on cerebrovascular reactivity to carbon dioxide (CCO(2)R) during sevoflurane anaesthesia in children, middle cerebral artery blood flow velocity (V(mca)) was measured over a range of end-tidal carbon dioxide concentrations (E'(CO(2))), using transcranial Doppler (TCD...
Synthesis of clean double-walled carbon nanotubes by a catalytic chemical vapour deposition (CCVD) method is reported; the catalyst is a Mg(1 - x)Co(x)O solid solution containing additions of Mo oxide; this MgO-based catalyst can be easily removed, leading to gram-scale amounts of clean carbon nanotubes, 77% of which are double-walled carbon nanotubes.
The production of high-quality graphene-oxide interfaces is normally achieved by graphene growth via chemical vapour deposition on a metallic surface, followed by transfer of the C layer onto the oxide, by atomic layer and physical vapour deposition of the oxide on graphene or by carbon deposition on top of oxide surfaces. These methods, however, come with a series of issues: they are complex, ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید