نتایج جستجو برای: divisor graph
تعداد نتایج: 201076 فیلتر نتایج به سال:
The Cartesian product of two hamiltonian graphs is always hamiltonian. For directed graphs, the analogous statement is false. We show that the Cartesian product C,,, x C,, of directed cycles is hamiltonian if and only if the greatest common divisor (g.c.d.) d of n, and n, is a t least two and there exist positive integers d,, d, so that d, + d, = d and g.c.d. (n,, d,) = g.c.d. (n,, d,) = 1. We ...
Let R be a commutative ring and Z(R) the set of all zero divisors R. Γ(R) is said to divisor graph if x,y ∈ V (Γ(R)) = (x,y) E(Γ(R)) only x.y 0. In this paper, we determine total vertex irregularity strength graphs associated with rings ℤp2 × Zq for p,q prime numbers.
Let $M$ be an $R$-module and $0 neq fin M^*={rm Hom}(M,R)$. We associate an undirected graph $gf$ to $M$ in which non-zero elements $x$ and $y$ of $M$ are adjacent provided that $xf(y)=0$ or $yf(x)=0$. Weobserve that over a commutative ring $R$, $gf$ is connected anddiam$(gf)leq 3$. Moreover, if $Gamma (M)$ contains a cycle,then $mbox{gr}(gf)leq 4$. Furthermore if $|gf|geq 1$, then$gf$ is finit...
In this article, we give several generalizations of the concept of annihilating ideal graph over a commutative ring with identity to modules. Weobserve that over a commutative ring $R$, $Bbb{AG}_*(_RM)$ isconnected and diam$Bbb{AG}_*(_RM)leq 3$. Moreover, if $Bbb{AG}_*(_RM)$ contains a cycle, then $mbox{gr}Bbb{AG}_*(_RM)leq 4$. Also for an $R$-module $M$ with$Bbb{A}_*(M)neq S(M)setminus {0}$, $...
It is shown how a connected graph and a tree with partially prescribed spectrum can be constructed. These constructions are based on a recent result of Salez that every totally real algebraic integer is an eigenvalue of a tree. This implies that for any (not necessarily connected) graph G, there is a tree T such that the characteristic polynomial P (G, x) of G can divide the characteristic poly...
Let R be a commutative ring with identity and A(R) be the set of ideals with nonzero annihilator. The annihilating-ideal graph of R is defined as the graph AG(R) with the vertex set A(R) = A(R)r {0} and two distinct vertices I and J are adjacent if and only if IJ = 0. In this paper, we study the domination number of AG(R) and some connections between the domination numbers of annihilating-ideal...
In 1988, Beck [10] introduced the notion of coloring of a commutative ring R. Let G be a simple graph whose vertices are the elements of R and two vertices x and y are adjacent if xy = 0. The graph G is known as the zero divisor graph of R. He conjectured that, the chromatic number χ(G) of G is same as the clique number ω(G) of G. In 1993, Anderson and Naseer [1] gave an example of a commutativ...
let r be a fnite commutative ring and n(r) be the set of non unit elements of r. the non unit graph of r, denoted by gamma(r), is the graph obtained by setting all the elements of n(r) to be the vertices and defning distinct vertices x and y to be adjacent if and only if x - yin n(r). in this paper, the basic properties of gamma(r) are investigated and some characterization results regarding co...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید