نتایج جستجو برای: edge 2 rainbow domination number
تعداد نتایج: 3487625 فیلتر نتایج به سال:
An edge-coloured path in a graph is rainbow if its edges have distinct colours. The rainbow connection number of a connected graph G, denoted by rc(G), is the minimum number of colours required to colour the edges of G so that any two vertices of G are connected by a rainbow path. The function rc(G) was first introduced by Chartrand et al. [Math. Bohem., 133 (2008), pp. 85-98], and has since at...
A Roman dominating function on a graph G = (V,E) is a function f : V −→ {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0 is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function is the value w(f) = ∑ v∈V f(v). The Roman domination number of a graph G, denoted by γR(G), equals the minimum weight of a Roman dominating function on ...
A set S of vertices is defined to be a power dominating set (PDS) of a graph G if every vertex and every edge in G can be monitored by the set S according to a set of rules for power system monitoring. The minimum cardinality of a PDS of G is its power domination number. In this article, we find upper bounds for the power domination number of some families of Cartesian products of graphs: the c...
A path in an edge colored graph is said to be a rainbow path if every edge in this path is colored with the same color. The rainbow connection number of G, denoted by rc(G), is the smallest number of colors needed to color its edges, so that every pair of its vertices is connected by at least one rainbow path. A rainbow u − v geodesic in G is a rainbow path of length d(u, v), where d(u, v) is t...
Bipolar intuitionistic fuzzy graphs (BIFG) with perfectly connected domination are introduced in this study. The study also discusses the bipolar antifuzzy (BIAFG) concepts. Additionally, topic of 2-domination BIAFG explored. we developed secure edge dominating set and its number some results derived suitable examples.
Let G be an edge-colored graph and v a vertex of G. The color degree of v is the number of colors appearing on the edges incident to v. A rainbow triangle in G is one in which all edges have distinct colors. In this paper, we first prove that an edge-colored graph on n vertices contains a rainbow triangle if the color degree sum of any two adjacent vertices is at least n+ 1. Afterwards, we char...
A path in an edge-colored graph G is rainbow if no two edges of the path are colored the same. The rainbow connection number rc(G) of G is the smallest integer k for which there exists a k-edge-coloring of G such that every pair of distinct vertices of G is connected by a rainbow path. Let f(d) denote the minimum number such that rc(G) ≤ f(d) for each bridgeless graph G with diameter d. In this...
For a graph property P and a graph G, a subset S of the vertices of G is a P-set if the subgraph induced by S has the property P. A P-Roman dominating function on a graph G is a labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2 and the set of all vertices with label 1 or 2 is a P-set. The P-Roman domination number γPR(G) of G is the minimum of Σv∈V (...
Let G be a nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ N, where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two edges of T receive the same color. For a vertex subset S ⊆ V (G), a tree that connects S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbo...
A set S of vertices of a graphG = (V,E) is a dominating set if every vertex of V (G)\S is adjacent to some vertex in S. The domination number γ(G) is the minimum cardinality of a dominating set of G. The domination subdivision number sdγ(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the domination number. Velammal ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید