The study of discriminants has been a central part of algebraic number theory (c.f. [30]), and has recently led to striking results in arithmetic geometry (e.g. [6], [33], [2]). In this article we summarize two different generalizations ([16], [11]) of discriminants to arithmetic schemes having a tame action by a finite group. We also discuss the results proved in [11, 15, 16] concerning the co...