نتایج جستجو برای: fuzzy regularization

تعداد نتایج: 110534  

2009
Zenglin Xu Rong Jin Jianke Zhu Irwin King Michael R. Lyu Zhirong Yang

We discuss the framework of Transductive Support Vector Machine (TSVM) from the perspective of the regularization strength induced by the unlabeled data. In this framework, SVM and TSVM can be regarded as a learning machine without regularization and one with full regularization from the unlabeled data, respectively. Therefore, to supplement this framework of the regularization strength, it is ...

2017
Abhishake Rastogi Dhinaharan Nagamalai

In learning theory, the convergence issues of the regression problem are investigated with the least square Tikhonov regularization schemes in both the RKHS-norm and the L -norm. We consider the multi-penalized least square regularization scheme under the general source condition with the polynomial decay of the eigenvalues of the integral operator. One of the motivation for this work is to dis...

2010
H Kleinert V Schulte-Frohlinde

For dimensions close to D = 4, the Feynman integrals in momentum space derived in Chapter 4 do not converge since their integrands fall off too slowly at large momenta. Divergences arising from this short-wavelength region of the integrals are called ultraviolet (UV)-divergences. For massive fields, these are the only divergences of the integrals. In the zero-mass limit relevant for critical ph...

Journal: :SIAM J. Scientific Computing 2011
Kazufumi Ito Bangti Jin Tomoya Takeuchi

In this paper we develop a novel criterion for choosing regularization parameters for nonsmooth Tikhonov functionals. The proposed criterion is solely based on the value function, and thus applicable to a broad range of functionals. It is analytically compared with the local minimum criterion, and a posteriori error estimates are derived. An efficient numerical algorithm for computing the minim...

2010
Henrik Ohlsson

In system identification, the Akaike Information Criterion (AIC) is a well known method to balance the model fit against model complexity. Regularization here acts as a price on model complexity. In statistics and machine learning, regularization has gained popularity due to modeling methods such as Support Vector Machines (SVM), ridge regression and lasso. But also when using a Bayesian approa...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده فنی و مهندسی 1389

در این پروژه برای اولین بار بهینه سازی بهنگام توابع عضویت فازی در حین عملکرد موتور dc انجام گرفته است. این بهینه سازی توسط الگوریتم فیلترکالمن توسعه یافته و بر اساس خطای لحظه ای سرعت، صورت گرفته است. بطوریکه کارایی کنترلر در کنترل سرعت موتور افزایش می یابد. درواقع فیلتر کالمن شکل ایده آل و مناسب توابع عضویت کنترل کننده fuzzy pid را برای گام بعدی از زمان، براساس حالت کنونی، خطای سرعت کنونی و اطل...

A.-R. Zirak, M. Khademi, M.-S. Mahloji,

We present an efficient method for the reduction of model equations in the linearized diffuse optical tomography (DOT) problem. We first implement the maximum a posteriori (MAP) estimator and Tikhonov regularization, which are based on applying preconditioners to linear perturbation equations. For model reduction, the precondition is split into two parts: the principal components are consid...

Journal: :J. Visual Communication and Image Representation 2000
Esther Radmoser Otmar Scherzer Joachim Weickert

Most seale-spaee eoneepts have been expressed as parabolie or hyperbolie partial differential equations (PDEs). In this paper we extend our work on seale-spaee properties of elliptie PDEs arising from regularization methods: we study linear and nonlinear regularization methods that are applied iteratively and with different regularization parameters. For these so-ealled nonstationary iterative ...

Journal: :SIAM Journal on Optimization 2007
Michael P. Friedlander Paul Tseng

The regularization of a convex program is exact if all solutions of the regularized problem are also solutions of the original problem for all values of the regularization parameter below some positive threshold. For a general convex program, we show that the regularization is exact if and only if a certain selection problem has a Lagrange multiplier. Moreover, the regularization parameter thre...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده ریاضی 1391

مقدمه: درعلم آمارسنتی همه پارامترها بوسیله مدلهای ریاضی ومشاهده های تجربی تعریف می شد. بعضی وقتها به نظر می رسد چنین فرضهایی برای مسائل زندگی روزمره سختگیرانه باشد.مخصوصا درصورتیکه ما با داده های زبان شناسی یا احتیاجاتی که صریح نباشند سرکارداشته باشیم. برای اینکه این مشکل را ازبین ببریم ازروش فازی استفاده می کنیم. تعریف مسئله: درمرحله اول از تحقیق درباره انواع مختلف از پدیده(زیستی-فنی-فیزیک...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید