نتایج جستجو برای: independent component analysis ica
تعداد نتایج: 3566042 فیلتر نتایج به سال:
19 scalp electrode (EEG) and 8 intra-cranial electrode (iEEG) are recorded simultaneously with a common reference. EEG data is subjected to independent component analysis (ICA) and localisation of components in grey matter is estimated by the sLORETA inverse solution. Correlation between the time series of two independent components and intra-cranial recordings is very high (computed over 23552...
Separation of independent sources using independent component analysis (ICA) requires prior knowledge of the number of independent sources. Performing ICA when the number of recordings is greater than the number of sources can give erroneous results. To improve the quality of separation, the most suitable recordings have to be identified before performing ICA. Techniques employed to estimate su...
ICA (Independent Component Analysis) is contrasted with PCA (Principal Component Analysis) in that ICA basis images are spatially localized, highlighting salient feature regions corresponding to eyes, eye brows, nose and lips. However, ICA basis images do not display perfectly local characteristic in the sense that pixels that do not belong to locally salient feature regions still have some wei...
Principal component analysis (PCA) and independent component analysis (ICA) were examined in their ability to recover dipole sources from simulated data. Datasets of EEG segments were generated that contained cortical sources that were temporally overlapping or non-overlapping, and dipole sources with varying degree of spatial orthogonality. For temporal overlapping sources, both PCA and ICA re...
Independent component analysis (ICA) aims to recover a set of unknown mutually independent source signals from their observed mixtures without knowledge of the mixing coefficients. In some applications, it is preferable to extract only one desired source signal instead of all source signals, and this can be achieved by a one-unit ICA technique. ICA with reference (ICA-R) is a one-unit ICA algor...
Spatial group independent component analysis (GICA) methods decompose multiple-subject functional magnetic resonance imaging (fMRI) data into a linear mixture of spatially independent components (ICs), some of which are subsequently characterized as brain functional networks. Group information guided independent component analysis (GIG-ICA) as a variant of GICA has been proposed to improve the ...
Parallel ICA identifies sub-components of resting state networks that covary with behavioral indices
Parallel Independent Component Analysis (para-ICA) is a multivariate method that can identify complex relationships between different data modalities by simultaneously performing Independent Component Analysis on each data set while finding mutual information between the two data sets. We use para-ICA to test the hypothesis that spatial sub-components of common resting state networks (RSNs) cov...
Independent Component Analysis (ICA) has found a wide range of applications in signal processing and multimedia, ranging from speech cleaning to face recognition. This paper presents a non-parametric approach to the ICA problem that is robust towards outlier effects. The algorithm, for the first time in the field of ICA, adopts an intuitive and direct approach, focusing on the very definition o...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید