نتایج جستجو برای: jacobi dunkl operator
تعداد نتایج: 103524 فیلتر نتایج به سال:
We discuss a class of generalized divided difference operators which give rise to a representation of Nichols-Woronowicz algebras associated to Weyl groups. For the root system of type A, we also study the condition for the deformations of the Fomin-Kirillov quadratic algebra, which is a quadratic lift of the Nichols-Woronowicz algebra, to admit a representation given by generalized divided dif...
We introduce and study the Dunkl symmetric systems. We prove the wellposedness results for the Cauchy problem for these systems. Eventually we describe the finite speed of it. Next the semi-linear Dunkl-wave equations are also studied.
Abstract In this paper we derive martingale estimating functions for the dimensionality parameter of a Bessel process based on eigenfunctions diffusion operator. Since is non-ergodic and theory developed ergodic diffusions, use space-time transformation formulate our results modified process. We deduce consistency, asymptotic normality discuss optimality. It turns out that function first eigenf...
and Applied Analysis 3 For all x, y, z ∈ R, we put Wα ( x, y, z ) : ( 1 − σx,y,z σz,x,y σz,y,x ) Δα ( x, y, z ) , 2.5
An uncertainty inequality for the Fourier–Dunkl series, introduced by the authors in [Ó. Ciaurri and J. L. Varona, A Whittaker-Shannon-Kotel’nikov sampling theorem related to the Dunkl transform, Proc. Amer. Math. Soc. 135 (2007), 2939–2947], is proved. This result is an extension of the classical uncertainty inequality for the Fourier series.
In this paper, we classify almost cosymplectic 3-manifolds with pseudo-parallel characteristic Jacobi operator. The only simply connected and complete non-cosymplectic 3-manifold pseudo parallel operator is the Minkowski motion group.
We offer two methods of inserting eigenvalues into spectral gaps of a given background Jacobi operator: The single commutation method which introduces eigenvalues into the lowest spectral gap of a given semi-bounded background Jacobi operator and the double commutation method which inserts eigenvalues into arbitrary spectral gaps. Moreover, we prove unitary equivalence of the commuted operators...
A short introduction to the use of the spectral theorem for self-adjoint operators in the theory of special functions is given. As the first example, the spectral theorem is applied to Jacobi operators, i.e. tridiagonal operators, on l(Z≥0), leading to a proof of Favard’s theorem stating that polynomials satisfying a three-term recurrence relation are orthogonal polynomials. We discuss the link...
The issues related to the integrability of quantum Calogero-Moser models based on any root systems are addressed. For the models with degenerate potentials, i.e. the rational with/without the harmonic confining force, the hyperbolic and the trigonometric, we demonstrate the following for all the root systems: (i) Construction of a complete set of quantum conserved quantities in terms of a total...
We give a generalisation of the multivariate beta integral. This is used to show that the (multivariate) Bernstein–Durrmeyer operator for a Jacobi weight has a limit as the weight becomes singular. The limit is an operator previously studied by Goodman and Sharma. From the elementary proof given, it follows that this operator inherits many properties of the Bernstein–Durrmeyer operator in a nat...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید