We establish an optimal $$L^p$$ -regularity theory for solutions to fourth order elliptic systems with antisymmetric potentials in all supercritical dimensions $$n\ge 5$$ : $$\begin{aligned} \Delta ^2 u=\Delta (D\cdot \nabla u)+\text {div}(E\cdot u) +(\Delta \Omega +G)\cdot u +f \qquad \ \mathrm{{in}}\ B^n, \end{aligned}$$ where $$\Omega \in W^{1,2}(B^n, so_m)$$ is and $$f\in L^p(B^n)$$ , $$D, ...