نتایج جستجو برای: learning automata
تعداد نتایج: 621042 فیلتر نتایج به سال:
We are motivated by the following question: which data languages admit an active learning algorithm? This question was left open in previous work authors, and is particularly challenging for recognised nondeterministic automata. To answer it, we develop theory of residual nominal automata, a subclass prove that this class has canonical representatives, can always be constructed via finite numbe...
Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...
We consider optimization problems where the objective function is defined over some continuous and some discrete variables, and only noise corrupted values of the objective function are observable. Such optimization problems occur naturally in PAC learning with noisy samples. We propose a stochastic learning algorithm based on the model of a hybrid team of learning automata involved in a stocha...
We present a Python package for learning (non-)probabilistic deterministic finite state automata and provide heuristics in the red-blue framework. As our package is built along the API of the popular scikit-learn package, it is easy to use and new learning methods are easy to add. It provides PDFA learning as an additional tool for sequence prediction or classification to data scientists, witho...
A stochastic automaton can perform a finite number of actions in a random environment. When a specific action is performed, the environment responds by producing an environment output that is stochastically related to the action. The aim is to design an automaton, using an evolutionary reinforcement scheme (the basis of the learning process), that can determine the best action guided by past ac...
Automata learning has been successfully applied in the verification of hardware and software. The size of the automaton model learned is a bottleneck for scalability and hence optimizations that enable learning of compact representations are important. In this paper we develop a class of optimizations and an accompanying correctness proof for learning algorithms, building upon a general framewo...
This paper introduces a novel payoff-based learning scheme for distributed optimization in repeatedly-played strategic-form games. Standard reinforcement-based learning schemes exhibit several limitations with respect to their asymptotic stability. For example, in two-player coordination games, payoff-dominant (or efficient) Nash equilibria may not be stochastically stable. In this work, we pre...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید