We consider functionals of the form $$\mathcal{F}(u):=\int_\Omega\!F(x,u,\nabla u)\,\mathrm{d} x,$$ where $\Omega\subseteq\mathbb{R}^n$ is open and bounded. The integrand $F\colon\Omega\times\mathbb{R}^N\times\mathbb{R}^{N\times n}\to\mathbb{R}$ assumed to satisfy classical assumptions a power $p$-growth corresponding strong quasiconvexity. In addition, $F$ H\"older continuous with exponent $2\...