نتایج جستجو برای: minimal learning parameters algorithm
تعداد نتایج: 1881512 فیلتر نتایج به سال:
This paper introduces variational expectation-maximization (VEM) algorithm for training Gaussian networks. Hyperparameters model distributions of parameters characterizing Gaussian mixture densities. The proposed algorithm employs a hierarchical learning strategy for estimating a set of hyperparameters and the number of Gaussian mixture components. A dual EM algorithm is employed as the initial...
We introduce a model-free algorithm for learning in Markov decision processes with parameterized actions—discrete actions with continuous parameters. At each step the agent must select both which action to use and which parameters to use with that action. We introduce the Q-PAMDP algorithm for learning in these domains, show that it converges to a local optimum, and compare it to direct policy ...
In this paper, a hybrid algorithm based on modified intelligent water drops algorithm and learning automata for solving Steiner tree problem is proposed. Since the Steiner tree problem is NP-hard, the aim of this paper is to design an algorithm to construct high quality Steiner trees in a short time which are suitable for real time multicast routing in networks. The global search and fast conve...
the article suggests an algorithm for regular classifier ensemble methodology. the proposed methodology is based on possibilistic aggregation to classify samples. the argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. the optimization aims at learning backgrounds as solid clusters in subspaces of the high-dim...
We consider the problem of policy evaluation in a special class of Markov Decision Processes (MDPs) where the underlying Markov chains are large and sparse. We start from a stationary model equation that the limit of Temporal Difference (TD) learning satisfies, and develop a Robbins-Monro method consistently estimating its coefficients. Then we introduce the minimal residual approaches, which s...
This study proposes a novel bacterial foraging swarm-based intelligent algorithm called the bacterial foraging particle swarm optimization (BFPSO) algorithm to design vector quantization (VQ)-based fuzzy-image compression systems. It improves compressed image quality when processing many image patterns. The BFPSO algorithm is an efficient evolutionary learning algorithm that manages complex glo...
Currently the parameters in a constraint solver are often selected by hand by experts in the field; these parameters might include the level of preprocessing to be used, the variable ordering heuristic or the suitable modelling approach. The efficient and automatic mechanism of parameters tuning for a constraint solver is a step towards making constraint programming a more widely accessible tec...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید