نتایج جستجو برای: multi label classification
تعداد نتایج: 981326 فیلتر نتایج به سال:
The challenge of unsupervised person re-identification (ReID) lies in learning discriminative features without true labels. Most previous works predict single-class pseudo labels through clustering. To improve the quality generated labels, this paper formulates ReID as a multi-label classification task to progressively seek Our method starts by assigning each image with label, then evolves leve...
Predicting the subcellular localization of proteins is an important and challenging problem. Traditional experimental approaches are often expensive and time-consuming. Consequently, a growing number of research efforts employ a series of machine learning approaches to predict the subcellular location of proteins. There are two main challenges among the state-of-the-art prediction methods. Firs...
This paper describes the submission of the BMET group to the Subfigure Classification and Multi-Label Classification tasks of the ImageCLEF 2016 medical subtrack. Our method creates a new optimised feature extractor by using medical images to fine-tune a CNN that has been pre-trained on general image data. Our classification method shows promising result in both the the subfigure classification...
Multi-label classification has rapidly attracted interest in the machine learning literature, and there are now a large number and considerable variety of methods for this type of learning. We present Meka: an open-source Java framework based on the well-known Weka library. Meka provides interfaces to facilitate practical application, and a wealth of multi-label classifiers, evaluation metrics,...
A framework for multi-label classification extended by Error Correcting Output Codes (ECOCs) is introduced and empirically examined in the article. The solution assumes the base multi-label classifiers to be a noisy channel and applies ECOCs in order to recover the classification errors made by individual classifiers. The framework was examined through exhaustive studies over combinations of th...
Multi-label classification has attracted an increasing amount of attention in recent years. To this end, many algorithms have been developed to classify multi-label data in an effective manner. However, they usually do not consider the pairwise relations indicated by sample labels, which actually play important roles in multi-label classification. Inspired by this, we naturally extend the tradi...
Colon cancer classification has a significant guidance value in clinical diagnoses and medical prognoses. The classification of colon cancers with high accuracy is the premise of efficient treatment. Our task is to build a system for colon cancer detection and classification based on slide histopathological images. Some former researches focus on single label classification. Through analyzing l...
Dimensionality reduction is an essential step in high-dimensional data analysis. Many dimensionality reduction algorithms have been applied successfully to multi-class and multi-label problems. They are commonly applied as a separate data preprocessing step before classification algorithms. In this paper, we study a joint learning framework in which we perform dimensionality reduction and multi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید