نتایج جستجو برای: objective particle swarm optimization
تعداد نتایج: 998346 فیلتر نتایج به سال:
Pareto based Multi-Objective Evolutionary Algorithms face several problems when dealing with a large number of objectives. In this situation, almost all solutions become nondominated and there is no pressure towards the Pareto Front. The use of Particle Swarm Optimization algorithm (PSO) in multi-objective problems grew in recent years. The PSO has been found very efficient in solve Multi-Objec...
In this paper, the influence of -dominance on Multi-objective Particle Swarm Optimization (MOPSO) methods is studied. The most important role of dominance is to bound the number of non-dominated solutions stored in the archive (archive size), which has influences on computational time, convergence and diversity of solutions. Here, -dominance is compared with the existing clustering technique fo...
optimization techniques can be efficiently utilized to achieve an optimal shape for arch dams. this optimal design can consider the conditions of the economy and safety simultaneously. the main aim is to present an applicable and practical model and suggest an algorithm for optimization of concrete arch dams to enhance their seismic performance. to achieve this purpose, a preliminary optimizati...
the gravitational search algorithm (gsa) is a novel optimization methodbased on the law of gravity and mass interactions. it has good ability to search forthe global optimum, but its searching speed is really slow in the last iterations. sothe hybridization of particle swarm optimization (pso) and gsa can resolve theaforementioned problem. in this paper, a modified pso, which the movement ofpar...
the markowitz’s optimization problem is considered as a standard quadratic programming problem that has exact mathematical solutions. considering real world limits and conditions, the portfolio optimization problem is a mixed quadratic and integer programming problem for which efficient algorithms do not exist. therefore, the use of meta-heuristic methods such as neural networks and evolutionar...
Based on the life cycle cost (LCC) approach, this paper presents an integral mathematical model and particle swarm optimization (PSO) algorithm for the heating system planning (HSP) problem. The proposed mathematical model minimizes the cost of heating system as the objective for a given life cycle time. For the particularity of HSP problem, the general particle swarm optimization algorithm was...
Determination of optimum location for drilling a new well not only requires engineering judgments but also consumes excessive computational time. Additionally, availability of many physical constraints such as the well length, trajectory, and completion type and the numerous affecting parameters including, well type, well numbers, well-control variables prompt that the optimization approaches b...
In this paper, we incorporate pheromone courtship mode of biology to improve particle swarm optimizer. The particle swarm optimization technique has ever since turned out to be a competitor in the field of numerical optimization. A particle swarm optimization consists of a number of individuals refining their knowledge of the given search space. Particle swarm optimizations are inspired by part...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید