نتایج جستجو برای: odd mean graph
تعداد نتایج: 796822 فیلتر نتایج به سال:
A (p, q) connected graph is edge-odd graceful graph if there exists an injective map f: E(G) → {1, 3, ..., 2q-1} so that induced map f+: V(G) → {0, 1,2, 3, ..., (2k-1)}defined by f+(x) o f(x, y) (mod 2k), where the vertex x is incident with other vertex y and k = max {p, q} makes all the edges distinct and odd. In this article, the Edge-odd gracefulness of C3 Pn and C3 2Pn is obtained. Refe...
A hole is a chordless cycle of length at least four. A hole is even (resp. odd) if it contains an even (resp. odd) number of vertices. A cap is a graph induced by a hole with an additional vertex that is adjacent to exactly two adjacent vertices on the hole. In this note, we use a decomposition theorem by Conforti et al. (1999) to show that if a graph G does not contain any even hole or cap as ...
Given a graph G = (V,E) and an integer D ≥ 1, we consider the problem of augmenting G by the smallest number of new edges so that the diameter becomes at most D. It is known that no constant approximation algorithms to this problem with an arbitrary graph G can be obtained unless P = NP . For a forest G and an odd D ≥ 3, it was open whether the problem is approximable within a constant factor. ...
A (p, q) connected graph is edge-odd graceful graph if there exists an injective map f: E(G) → {1, 3, ..., 2q-1} so that induced map f+: V(G) → {0, 1,2, 3, ..., (2k-1)}defined by f+(x) o f(x, y) (mod 2k), where the vertex x is incident with other vertex y and k = max {p, q} makes all the edges distinct and odd. In this article, the Edge-odd gracefulness of C3 Pn and C3 2Pn is obtained. Refe...
A (p, q) connected graph is edge-odd graceful graph if there exists an injective map f: E(G) → {1, 3, ..., 2q-1} so that induced map f+: V(G) → {0, 1,2, 3, ..., (2k-1)}defined by f+(x) o f(x, y) (mod 2k), where the vertex x is incident with other vertex y and k = max {p, q} makes all the edges distinct and odd. In this article, the Edge-odd gracefulness of C3 Pn and C3 2Pn is obtained. Refe...
In a graph G of maximum degree 3, let γ(G) denote the largest fraction of edges that can be 3 edge-coloured. Rizzi [9] showed that γ(G) ≥ 1 − 2 3godd(G) where godd(G) is the odd girth of G, when G is triangle-free. In [3] we extended that result to graph with maximum degree 3. We show here that γ(G) ≥ 1− 2 3godd(G)+2 , which leads to γ(G) ≥ 15 17 when considering graphs with odd girth at least ...
Let $G$ be a finite group and let $GK(G)$ be the prime graph of $G$. We assume that $ngeqslant 5 $ is an odd number. In this paper, we show that the simple groups $B_n(3)$ and $C_n(3)$ are 2-recognizable by their prime graphs. As consequences of the result, the characterizability of the groups $B_n(3)$ and $C_n(3)$ by their spectra and by the set of orders of maximal abelian subgroups are ...
A (p, q) connected graph is edge-odd graceful graph if there exists an injective map f: E(G) → {1, 3, ..., 2q-1} so that induced map f+: V(G) → {0, 1,2, 3, ..., (2k-1)}defined by f+(x) o f(x, y) (mod 2k), where the vertex x is incident with other vertex y and k = max {p, q} makes all the edges distinct and odd. In this article, the Edge-odd gracefulness of C3 Pn and C3 2Pn is obtained. Refe...
A (p, q) connected graph is edge-odd graceful graph if there exists an injective map f: E(G) → {1, 3, ..., 2q-1} so that induced map f+: V(G) → {0, 1,2, 3, ..., (2k-1)}defined by f+(x) o f(x, y) (mod 2k), where the vertex x is incident with other vertex y and k = max {p, q} makes all the edges distinct and odd. In this article, the Edge-odd gracefulness of C3 Pn and C3 2Pn is obtained. Refe...
A (p, q) connected graph is edge-odd graceful graph if there exists an injective map f: E(G) → {1, 3, ..., 2q-1} so that induced map f+: V(G) → {0, 1,2, 3, ..., (2k-1)}defined by f+(x) o f(x, y) (mod 2k), where the vertex x is incident with other vertex y and k = max {p, q} makes all the edges distinct and odd. In this article, the Edge-odd gracefulness of C3 Pn and C3 2Pn is obtained. Refe...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید