نتایج جستجو برای: signless laplacian estrada index
تعداد نتایج: 409161 فیلتر نتایج به سال:
Let G be an n-vertex graph. If λ1, λ2, . . . , λn are the adjacency eigenvalues of G, then the Estrada index and the energy of G are defined as EE(G) = ∑n i=1 e λi and E(G) = ∑n i=1 |λi|, respectively. Some new lower bounds for EE(G) are obtained in terms of E(G). We also prove that if G has m edges and t triangles, then EE(G) ≥ √ n2 + 2mn+ 2nt. The new lower bounds improve previous lower bound...
A graph G is said to be determined by its Q-spectrum if with respect to the signless Laplacian matrix Q , any graph having the same spectrum as G is isomorphic to G. The lollipop graph, denoted by Hn,p, is obtained by appending a cycle Cp to a pendant vertex of a path Pn−p. In this paper, it is proved that all lollipop graphs are determined by their Q -spectra. © 2008 Elsevier B.V. All rights r...
The notion of strongly quotient graph (SQG) was introduced by Adiga et al. (2007). In this paper, we obtain some better results for the distance energy and the distance Estrada index of any connected strongly quotient graph (CSQG) as well as some relations between the distance Estrada index and the distance energy. We also present some bounds for the distance energy and the distance Estrada ind...
Let G be a simple connected graph on n vertices and λ1, λ2, . . . , λn be the eigenvalues of the adjacency matrix of G. The Estrada index of G is defined as EE(G) = Σ i=1 ei . A cactus is a connected graph in which any two cycles have at most one common vertex. In this work, the unique graph with maximal Estrada index in the class of all cacti with n vertices and k cycles was determined. Also, ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید