نتایج جستجو برای: solid oxide fuel cells sofcs
تعداد نتایج: 1746481 فیلتر نتایج به سال:
Rare earth element-doped bismuth oxides with the fluorite structure (δ-Bi2O3) exhibit high oxygen ion conductivity at low temperature, which is promising electrolyte materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs). However, traditional co-sintering process not applicable to manufacturing of IT-SOFCs using melting point Bi2O3-based electrolyte, while further high-tempera...
BaZr0.8Y0.2O3-∂ (BZY)-NiO composite powders with different BZY-NiO weight ratios were prepared by a combustion method as anodes for proton-conducting solid oxide fuel cells (SOFCs). After heating to 1100°C for 6 h, the composite powders were made of a well-dispersed mixture of two phases, BZY and NiO. Chemical stability tests showed that the BZY-NiO anodic powders had good stability against CO2...
The development of solid oxide fuel cells (SOFCs) for powering vehicles requires high power densities. radial flows generated by the insert structures in SOFC channels could improve density facilitating to enter porous anode electrochemical reactions. In this paper, we developed a 2D axisymmetric numerical model examine influence convergent conical ring on flow and mass transfer characteristics...
Composites formed by infiltration of 45 wt % La0.8Sr0.2Cr0.5Mn0.5O3 (LSCM) into a 65% porous yttriastabilized zirconia (YSZ) scaffold were investigated in order to understand the reasons this material is able to provide excellent anode performance in solid oxide fuel cells (SOFCs). Scanning electron microscopy showed that the LSCM forms a film over the YSZ after calcination at 1473 K but that t...
Previous experimental studies have shown that addition of small amounts of oxygen to a hydrocarbon fuel stream can control coking in the anode, while relatively large amounts of oxygen are present in the fuel stream in single-chamber solid oxide fuel cells SOFCs . In order to rationally design an anode for such use, it is important to understand the coupled catalytic oxidation/ reforming chemis...
Solid oxide fuel cells (SOFCs) are inevitably affected by the tensile stress field imposed by the rigid substrate during constrained sintering, which strongly affects microstructural evolution and flaw generation in the fabrication process and subsequent operation. In the case of sintering a composite cathode, one component acts as a continuous matrix phase while the other acts as a dispersed p...
Novel strategies based on spray-pyrolysis deposition are proposed to increase the triple-phase boundary (TPB) of La0.8Sr0.2MnO3-δ (LSM) cathodes in contact with yttria-stabilized zirconia (YSZ) electrolyte: (i) nanocrystalline LSM films deposited on as-prepared YSZ surface; (ii) the addition of poly(methyl methacrylate) microspheres as pore formers to further increase the porosity of the film c...
Moving away from conventional solid oxide electrolytes, hybrid fuel cells based on composite electrolytes (a solid oxide electrolyte and a molten alkaline carbonate phase) exhibit promising performance due to the high electrolyte conductivity within the so-called intermediate temperature ranges (400-600 C). These electrolytes are a blend of those traditionally used in Solid Oxide and Molten Car...
Lack of fundamental understanding the oxygen reduction reaction (ORR) hampers development effective metal oxide catalysts and advance low-temperature solid fuel cells (LT-SOFCs). In this study, we report Ba0.5Sr0.5Fe1–xSbxO3–δ (BSFSb, x = 0, 0.05, 0.1) cathodes designed from both theoretical experimental aspects to study a good relationship between material property enhanced ORR activity. The B...
As solid oxide fuel cell (SOFC) technology is rapidly evolving, high-fidelity mathematical models based on physical principles have become essential tools for SOFC system design and analysis. While several SOFC models have been developed by different groups using different modeling assumptions, little analysis of the effects of these assumptions on model performance can be found in literature. ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید