نتایج جستجو برای: strongly t dual rickart modules

تعداد نتایج: 1099583  

Journal: :Iraqi Journal of Science 2020

The first part of the paper is concerned to relationship between the sets of associated primes of the generalized $d$-local cohomology modules and the ordinary  generalized local cohomology  modules.  Assume that $R$ is a commutative Noetherian local ring, $M$ and $N$  are  finitely generated  $R$-modules and $d, t$ are two integers. We prove that $Ass H^t_d(M,N)=bigcup_{Iin Phi} Ass H^t_I(M,N)...

Journal: :Transactions of the American Mathematical Society 1997

1999
C Menezes

Given a nite dimensional complex vector space V let D(V) denote the Weyl algebra of V. Kashiwara and Schapira ((KS96b]) constructed the conic sheaf O t V of holomorphic functions temperate at innnity and proved its invariance by the Laplace transform of D(V)-modules. Here we develop a similar program for the \dual" complex O w V of holomorphic functions rapidly decreasing at innnity.

2008
UPASANA KASHYAP

We prove that two dual operator algebras are weak Morita equivalent in the sense of [4] if and only if they have equivalent categories of dual operator modules via completely contractive functors which are also weakcontinuous on appropriate morphism spaces. Moreover, in a fashion similar to the operator algebra case we can characterize such functors as the module normal Haagerup tensor product ...

2002
Peter Vecsernyés

We extend the Larson–Sweedler theorem for weak Hopf algebras by proving that a finite dimensional weak bialgebra is a weak Hopf algebra iff it possesses a non-degenerate left integral. We establish the autonomous monoidal category of the modules of a weak Hopf algebra A and show the semisimplicity of the unit and the invertible modules of A. We also reveal the connection of these modules to lef...

2008
Peter Vecsernyés

We extend the Larson–Sweedler theorem [10] to weak Hopf algebras by proving that a finite dimensional weak bialgebra is a weak Hopf algebra iff it possesses a non-degenerate left integral. We show that the category of modules over a weak Hopf algebra is autonomous monoidal with semisimple unit and invertible modules. We also reveal the connection of invertible modules to left and right grouplik...

2004
Hiroshi TAKAI

The moduli spaces of Yang-Mills connections on finitely generated projective modules associated with noncommutative flows are studied. It is actually shown that they are homeomorphic to those on dual modules associated with dual noncommutative flows. Moreover the method is also applicable to the case of noncommutative multi-flows.

Journal: :Communications in Algebra 2016

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید