نتایج جستجو برای: travelling wave solutions
تعداد نتایج: 551950 فیلتر نتایج به سال:
The tanh method is a powerful solution method; various extension forms of the tanh method have been developed with a computerized symbolic computation and is used for constructing the exact travelling wave solutions, of coupled nonlinear equations arising in physics. The obtained solutions include solitons, kinks and plane periodic solutions. First a power series in tanh was used as an ansatz t...
This paper concentrates on a particular first-order coupled PDE system. It provides both a detailed treatment of the existence and uniqueness of monotone travelling waves to various equilibria, by differential-equation theory and by probability theory and a treatment of the corresponding hyperbolic initial-value problem, by analytic methods. The initial-value problem is studied using characteri...
In this paper we establish the nonlinear stability of solitary travelling-wave solutions for the Kawahara-KdV equation ut + uux + uxxx − γ1uxxxxx = 0, and the modified Kawahara-KdV equation ut + 3u 2ux + uxxx − γ2uxxxxx = 0, where γi ∈ R is a positive number when i = 1, 2. The main approach used to determine the stability of solitary travelling-waves will be the theory developed by Albert in [1].
We consider the weakly dissipative and weakly dispersive Burgers-Hopf-Korteweg-de-Vries equation with the diffusion coefficient ε and the dispersion rate δ in the range δ/ε → 0. We study the travelling wave connecting u(−∞) = 1 to u(+∞) = 0 and show that it converges strongly to the entropic shock profile as ε, δ → 0. Key-words Travelling waves, moderate dispersion, Korteweg de Vries equation, ...
The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To ver...
A set of travelling wave solutions to a hyperbolic generalization of the convectionreaction-diffusion is studied by the methods of local nonlinear alnalysis and numerical simulation. Special attention is paid to displaying appearance of the compactly supported soloutions, shock fronts, soliton-like solutions and peakons PACS codes: 02.30.Jr; 47.50.Cd; 83.10.Gr
Pipe flow is perhaps the classic problem of fluid dynamics. Its simplicity of form lends itself admirably to experimenters but conceals a wealth of unanswered questions. Despite Reynolds’ conducting his seminal experiments over a century ago, few formal results are known for this flow. Over the years many simplifications have been considered, including linearisation, azimuthal invariance and st...
Sampling equation method is presented to look for exact solutions of nonlinear differential equations. Application of this approach to one of the extensive chaos model is considered. Exact solutions of this model in travelling wave are given. Nonlinear evolution equation for the considered extensive chaos model is shown to have solitary and periodical waves.
Trial equation method is a powerful tool for obtaining exact solutions of nonlinear differential equations. In this paper, the improved Boussinesq is reduced to an ordinary differential equation under the travelling wave transformation. Trial equation method and the theory of complete discrimination system for polynomial are used to establish exact solutions of the improved Boussinesq equation.
In this paper, travelling wave solutions to the nonlinearly dispersive Schrödinger equation are computed in the case of onedimensional non-relativistic electron confined to a cylindrical quantum well. Investigations gave evidence to the possibility of simplified continuous solutions which are in good agreement with the probabilistic interpretation of this equation.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید