نتایج جستجو برای: tuple total restrained domination number
تعداد نتایج: 1842615 فیلتر نتایج به سال:

 Let G be a connected graph. A set S ⊆ V (G) is restrained 2-resolving hop dominating of if and = or ⟨V (G)\S⟩ has no isolated vertex. The domination number G, denoted by γr2Rh(G) the smallest cardinality G. This study aims to combine concept with sets graphs. main results generated in this include characterization join, corona, edge corona lexicographic product graphs, as well their corr...
For a connected graph G = (V,E) of order at least two, a total restrained monophonic set S of a graph G is a restrained monophonic set S such that the subgraph induced by S has no isolated vertices. The minimum cardinality of a total restrained monophonic set of G is the total restrained monophonic number of G and is denoted by mtr(G). A total restrained monophonic set of cardinality mtr(G) is ...
A set S of vertices in a graph G = (V,E) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a total dominating set of G. The total domination subdivision number of G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the tot...
Let $G=(V(G),E(G))$ be a graph, $gamma_t(G)$. Let $ooir(G)$ be the total domination and OO-irredundance number of $G$, respectively. A total dominating set $S$ of $G$ is called a $textit{total perfect code}$ if every vertex in $V(G)$ is adjacent to exactly one vertex of $S$. In this paper, we show that if $G$ has a total perfect code, then $gamma_t(G)=ooir(G)$. As a consequence, ...
a subset $s$ of vertices in a graph $g$ is called a geodetic set if every vertex not in $s$ lies on a shortest path between two vertices from $s$. a subset $d$ of vertices in $g$ is called dominating set if every vertex not in $d$ has at least one neighbor in $d$. a geodetic dominating set $s$ is both a geodetic and a dominating set. the geodetic (domination, geodetic domination) number...
A graph G with no isolated vertex is total domination vertex critical if for any vertex v of G that is not adjacent to a vertex of degree one, the total domination number of G− v is less than the total domination number of G. We call these graphs γt-critical. In this paper, we determine the domination and the total domination number in the Circulant graphs Cn〈1, 3〉, and then study γ-criticality...
Let G = (V,E) be a graph. A subset D ⊆ V is a dominating set if every vertex not in D is adjacent to a vertex in D. A dominating set D is called a total dominating set if every vertex in D is adjacent to a vertex in D. The domination (resp. total domination) number of G is the smallest cardinality of a dominating (resp. total dominating) set of G. The bondage (resp. total bondage) number of a n...
Abstract Let G be a graph of minimum degree at least two. A set $$D\subseteq V(G)$$ D ⊆ V ( G ) is said to double total dominating if $$|N(v)\cap D|\ge 2$$ | N ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید