نتایج جستجو برای: weakly compact operators

تعداد نتایج: 227571  

Journal: :Proceedings of the Japan Academy, Series A, Mathematical Sciences 1957

Journal: :Annales Academiae Scientiarum Fennicae Series A I Mathematica 1989

2013
Francis J. Narcowich

Proof. Properties 2 and 3 are left to the reader. For property 1, assume that S is an unbounded compact set. Since S is unbounded, we may select a sequence {vn}n=1 such that ‖vn‖ → 0 as n→∞. Since S is compact, this sequence will have a convergent subsequence, say {vk}k=1, which will still be unbounded. This sequence is Cauchy, so there is a positive integer K for which ‖v`− vm‖ ≤ 1/2 for all `...

‎We present streamlined proofs of certain maximality principles studied by Hamkins‎ ‎and Woodin‎. ‎Moreover‎, ‎we formulate an intermediate maximality principle‎, ‎which is‎ ‎shown here to be equiconsistent with the existence of a weakly compact cardinal $kappa$ such that $V_{kappa}prec V$‎.

Journal: :bulletin of the iranian mathematical society 2014
b. khadijeh moosavi s. mohammad moshtaghioun

for suitable banach spaces $x$ and $y$ with schauder decompositions and‎ ‎a suitable closed subspace $mathcal{m}$ of some compact operator space from $x$ to $y$‎, ‎it is shown that the strong banach-saks-ness of all evaluation‎ ‎operators on ${mathcal m}$ is a sufficient condition for the weak‎ ‎banach-saks property of ${mathcal m}$, where for each $xin x$ and $y^*in‎ ‎y^*$‎, ‎the evaluation op...

2011

In these notes we provide an introduction to compact linear operators on Banach and Hilbert spaces. These operators behave very much like familiar finite dimensional matrices, without necessarily having finite rank. For more thorough treatments, see [RS, Y]. Definition 1 Let X and Y be Banach spaces. A linear operator C : X → Y is said to be compact if for each bounded sequence {xi}i∈IN ⊂ X , t...

2014

In these notes we provide an introduction to compact linear operators on Banach and Hilbert spaces. These operators behave very much like familiar finite dimensional matrices, without necessarily having finite rank. For more thorough treatments, see [RS, Y]. Definition 1 Let X and Y be Banach spaces. A linear operator C : X → Y is said to be compact if for each bounded sequence {xi}i∈IN ⊂ X , t...

G. Esslamzadeh M. Shadab

We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and ...

Journal: :Acta Mathematica Hungarica 2016

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید