نتایج جستجو برای: 2 rainbow domination number

تعداد نتایج: 3412189  

Journal: :Discrete Mathematics 2006
Tamara Burton David P. Sumner

A graph G is dot-critical if contracting any edge decreases the domination number. It is totally dot-critical if identifying any two vertices decreases the domination number. We show that the totally dot-critical graphs essentially include the much-studied domination vertex-critical and edge-critical graphs as special cases. We investigate these properties, and provide a characterization of dot...

A total Roman dominating function on a graph $G$ is a function $f: V(G) rightarrow {0,1,2}$ such that for every vertex $vin V(G)$ with $f(v)=0$ there exists a vertex $uin V(G)$ adjacent to $v$ with $f(u)=2$, and the subgraph induced by the set ${xin V(G): f(x)geq 1}$ has no isolated vertices. The total Roman domination number of $G$, denoted $gamma_{tR}(G)$, is the minimum weight $omega(f)=sum_...

Journal: :Applied Mathematics and Computation 2014
Xiaolong Huang Xueliang Li Yongtang Shi Jun Yue Yan Zhao

An edge-colored graph G is rainbow connected if every two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a connected graph G, denoted by rcðGÞ, is the smallest number of colors that are needed in order to make G rainbow connected. It was proved that computing rcðGÞ is an NP-hard problem, as well as that even deciding whether a graph has rcðGÞ...

A subset D of vertices of a graph G is a dominating set if for each u ∈ V (G) \ D, u is adjacent to somevertex v ∈ D. The domination number, γ(G) ofG, is the minimum cardinality of a dominating set of G. A setD ⊆ V (G) is a total dominating set if for eachu ∈ V (G), u is adjacent to some vertex v ∈ D. Thetotal domination number, γt (G) of G, is theminimum cardinality of a total dominating set o...

Journal: :Discussiones Mathematicae Graph Theory 2001
Maria Kwasnik Maciej Zwierzchowski

This paper contains a number of estimations of the split domination number and the maximal domination number of a graph with a deleted subset of edges which induces a complete subgraph Kp. We discuss noncomplete graphs having or not having hanging vertices. In particular, for p = 2 the edge deleted graphs are considered. The motivation of these problems comes from [2] and [6], where the authors...

2004
Magdalena Lemańska

Two new domination parameters for a connected graph G: the weakly convex domination number of G and the convex domination number of G are introduced. Relations between these parameters and the other domination parameters are derived. In particular, we study for which cubic graphs the convex domination number equals the connected domination number.

In this paper, we study both concepts of geodetic dominatingand edge geodetic dominating sets and derive some tight upper bounds onthe edge geodetic and the edge geodetic domination numbers. We also obtainattainable upper bounds on the maximum number of elements in a partitionof a vertex set of a connected graph into geodetic sets, edge geodetic sets,geodetic domin...

2013
J. AMJADI H. KARAMI S. M. SHEIKHOLESLAMI Hamid Reza Maimani J. Amjadi H. Karami S. M. Sheikholeslami

A Roman dominating function on a graph G = (V,E) is a function f : V −→ {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0 is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function is the value w(f) = ∑ v∈V f(v). The Roman domination number of a graph G, denoted by γR(G), equals the minimum weight of a Roman dominating function on ...

2014
MARCIN KRZYWKOWSKI Ioan Tomescu Marcin Krzywkowski

For a graph G = (V,E), a subset D ⊆ V (G) is a total dominating set if every vertex of G has a neighbor in D. The total domination number of G is the minimum cardinality of a total dominating set of G. A subset D ⊆ V (G) is a 2-dominating set of G if every vertex of V (G) \ D has at least two neighbors in D, while it is a 2-outer-independent dominating set of G if additionally the set V (G) \ D...

2005
Mathieu Liedloff Ton Kloks Jiping Liu Sheng-Lung Peng

A Roman dominating function of a graph G = (V,E) is a function f : V → {0, 1, 2} such that every vertex x with f(x) = 0 is adjacent to at least one vertex y with f(y) = 2. The weight of a Roman dominating function is defined to be f(V ) = P x∈V f(x), and the minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. In this paper we answer an open pro...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید