نتایج جستجو برای: chebyshev and legendre polynomials
تعداد نتایج: 16838698 فیلتر نتایج به سال:
In 1969 Harold Widom published his seminal paper (Widom, 1969) which gave a complete description of orthogonal and Chebyshev polynomials on a system of smooth Jordan curves. When there were Jordan arcs present the theory of orthogonal polynomials turned out to be just the same, but for Chebyshev polynomials Widom’s approach proved only an upper estimate, which he conjectured to be the correct a...
In this paper, we propose a new method to design an observer and control the linear singular systems described by Chebyshev wavelets. The idea of the proposed approach is based on solving the generalized Sylvester equations. An example is also given to illustrate the procedure.
The electrostatic interpretation of the Jacobi–Gauss quadrature points is exploited to obtain interpolation points suitable for approximation of smooth functions defined on a simplex. Moreover, several new estimates, based on extensive numerical studies, for approximation along the line using Jacobi–Gauss–Lobatto quadrature points as the nodal sets are presented. The electrostatic analogy is ex...
We analyze the problem facing the team that wins the toss at the deciding fifth set of a volleyball match. The team’s decision to serve or to receive the service can make a difference to the eventual outcome of the match. We characterize the conditions under which it is better to serve or to receive the service at that set. These conditions are obtained by first expressing the exact probability...
We give a remarkable additional othogonality property of the classical Legendre polynomials on the real interval [−1, 1]: polynomials up to degree n from this family are mutually orthogonal under the arcsine measure weighted by the degree-n normalized Christoffel function.
We show how lattice paths and the reflection principle can be used to give easy proofs of unimodality results. In particular, we give a “one-line” combinatorial proof of the unimodality of the binomial coefficients. Other examples include products of binomial coefficients, polynomials related to the Legendre polynomials, and a result connected to a conjecture of Simion.
We show that every two-bridge knot K of crossing number N admits a polynomial parametrization x = T3(t), y = Tb(t), z = C(t) where Tk(t) are the Chebyshev polynomials and b + degC = 3N . If C(t) = Tc(t) is a Chebyshev polynomial, we call such a knot a harmonic knot. We give the classification of harmonic knots for a ≤ 3. Most results are derived from continued fractions and their matrix represe...
The Müntz–Legendre polynomials arise by orthogonalizing the Müntz system {xλ0 , xλ1 , . . . } with respect to the Lebesgue measure on [0, 1]. In this paper, differential and integral recurrence formulas for the Müntz–Legendre polynomials are obtained. Interlacing and lexicographical properties of their zeros are studied, and the smallest and largest zeros are universally estimated via the zeros...
We prove a Ramanujan-type formula for 520/π conjectured by Sun. Our proof begins with a hypergeometric representation of the relevant double series, which relies on a recent generating function for Legendre polynomials by Wan and Zudilin. After showing that appropriate modular parameters can be introduced, we then apply standard techniques, going back to Ramanujan, for establishing series for 1/π.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید