نتایج جستجو برای: chebyshev property

تعداد نتایج: 163173  

2003
Chong Li

This paper is concerned with the problem of nonlinear simultaneous Chebyshev approximation in a real continuous function space. Some results on existence are established, in addition to characterization conditions of Kolmogorov type and also of alternation type. Applications are given to approximation by rational functions, by exponential sums and by Chebyshev splines with free knots.  2003 El...

2000
Jie Shen Feng Wang Jinchao Xu

This paper concerns the iterative solution of the linear system arising from the Chebyshev–collocation approximation of second-order elliptic equations and presents an optimal multigrid preconditioner based on alternating line Gauss–Seidel smoothers for the corresponding stiffness matrix of bilinear finite elements on the Chebyshev–Gauss–Lobatto grid.  2000 IMACS. Published by Elsevier Science...

Journal: :international journal of nonlinear analysis and applications 2015
madjid eshaghi hamidreza reisi dezaki alireza moazzen

‎let $x$ be a real normed  space, then  $c(subseteq x)$  is  functionally  convex  (briefly, $f$-convex), if  $t(c)subseteq bbb r $ is  convex for all bounded linear transformations $tin b(x,r)$; and $k(subseteq x)$  is  functionally   closed (briefly, $f$-closed), if  $t(k)subseteq bbb r $ is  closed  for all bounded linear transformations $tin b(x,r)$. we improve the    krein-milman theorem  ...

Journal: :Math. Comput. 1998
Natasha Flyer

The usual way to determine the asymptotic behavior of the Chebyshev coefficients for a function is to apply the method of steepest descent to the integral representation of the coefficients. However, the procedure is usually laborious. We prove an asymptotic upper bound on the Chebyshev coefficients for the kth integral of a function. The tightness of this upper bound is then analyzed for the c...

Journal: :Math. Comput. 1999
H. G. Khajah

We consider the evaluation of a recent generalization of the Epstein-Hubbell elliptic-type integral using the tau method approximation with a Chebyshev polynomial basis. This also leads to an approximation of Lauricella’s hypergeometric function of three variables. Numerical results are given for polynomial approximations of degree 6.

Journal: :Math. Comput. 2008
Karl Deckers Joris Van Deun Adhemar Bultheel

In this paper we provide an extension of the Chebyshev orthogonal rational functions with arbitrary real poles outside [−1, 1] to arbitrary complex poles outside [−1, 1]. The zeros of these orthogonal rational functions are not necessarily real anymore. By using the related para-orthogonal functions, however, we obtain an expression for the nodes and weights for rational Gauss-Chebyshev quadrat...

In this note, we characterize Chebyshev subalgebras of unital JB-algebras. We exhibit that if B is Chebyshev subalgebra of a unital JB-algebra A, then either B is a trivial subalgebra of A or A= H R .l, where H is a Hilbert space

The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential ...

2008
G. Sood

We propose a novel method for studying the production of anticentauro events in high energy heavy ion collisions utilizing Chebyshev expansion coefficients. These coefficients have proved to be very efficient in investigating the pattern of fluctuations in neutral pion fraction. For the anticentauro like events, the magnitude of first few coefficients is strongly enhanced (≈3 times) as compared...

Journal: :Advances in Engineering Software 2009
Karl Deckers Joris Van Deun Adhemar Bultheel

We provide an algorithm to compute arbitrarily many nodes and weights for rational Gauss-Chebyshev quadrature formulas integrating exactly in spaces of rational functions with complex poles outside [−1, 1]. Contrary to existing rational quadrature formulas, the computational effort is very low, even for extremely high degrees, and under certain conditions on the poles it can be shown that the c...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید