نتایج جستجو برای: classical p adic groups
تعداد نتایج: 1942112 فیلتر نتایج به سال:
The classical Gindikin-Karpelevich formula appears in Langlands’ calculation of the constant terms of Eisenstein series on reductive groups and in Macdonald’s work on p-adic groups and affine Hecke algebras. The formula has been generalized in the work of Garland to the affine Kac-Moody case, and the affine case has been geometrically constructed in a recent paper of Braverman, Finkelberg, and ...
We define exact functors from categories of Harish-Chandra modules for certain real classical groups to finite-dimensional modules over an associated graded affine Hecke algebra with parameters. We then study some of the basic properties of these functors. In particular, we show that they map irreducible spherical representations to irreducible spherical representations and, moreover, that they...
The classical Gindikin-Karpelevich formula appears in Langlands’ calculation of the constant terms of Eisenstein series on reductive groups and in Macdonald’s work on p-adic groups and affine Hecke algebras. The formula has been generalized in the work of Garland to the affine Kac-Moody case, and the affine case has been geometrically constructed in a recent paper of Braverman, Finkelberg, and ...
Abstract We clarify the links between graded Specht construction of modules over cyclotomic Hecke algebras and Robinson-Schensted-Knuth (RSK) for quiver type $A$, which was recently imported from setting representations $p$-adic groups. For that goal we develop a theory crystal derivative operators on algebra categorifies Berenstein–Zelevinsky strings framework quantum groups generalizes varian...
For an elliptic curve over the rational number field and a prime number p, we study the structure of the classical Selmer group of p-power torsion points. In our previous paper [12], assuming the main conjecture and the non-degeneracy of the p-adic height pairing, we proved that the structure of the Selmer group with respect to p-power torsion points is determined by some analytic elements δ̃m d...
We define a power series expansion of a holomorphic modular form f in the p-adic neighborhood of a CM point x of type K for a split good prime p. The modularity group can be either a classical conguence group or a group of norm 1 elements in an order of an indefinite quaternion algebra. The expansion coefficients are shown to be closely related to the classical Maass operators and give p-adic i...
For a quasi-split classical group over p-adic field with sufficiently large residual characteristic, we prove that the maximum depth of representation in each L-packet equals corresponding L-parameter. Furthermore, for unitary groups, show is constant L-packet. The key an analysis endoscopic character relation via harmonic based on Bruhat–Tits theory. These results are slight generalizations re...
Physics as a generalized number theory program involves three threads: various p-adic physics and their fusion together with real number based physics to a larger structure, the attempt to understand basic physics in terms of classical number fields (in particular, identifying associativity condition as the basic dynamical principle), and infinite primes whose construction is formally analogous...
Berger and Colmez introduced a theory of families of overconvergent étale (φ,Γ)-modules associated to families of p-adic Galois representations over p-adic Banach algebras. However, in contrast with the classical theory of (φ,Γ)-modules, the functor they obtain is not an equivalence of categories. In this paper, we prove that when the base is an affinoid space, every family of (overconvergent) ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید