نتایج جستجو برای: convex programming
تعداد نتایج: 377543 فیلتر نتایج به سال:
A bstract This paper addresses itself to an algorithm for a convex minimization problem with an additional convex multiplicative constraint. A convex multiplicative constraint is such that a product of two convex functions is less than or equal to some constant. It is shown that this non convex problem can be solved by solving a sequence of convex programming problems. The basic idea of this al...
In the eld of nonlinear programming (in continuous variables) convex analysis [21, 22] plays a pivotal role both in theory and in practice. An analogous theory for discrete optimization (nonlinear integer programming), called \discrete convex analysis" [18, 17], is developed for L-convex and M-convex functions by adapting the ideas in convex analysis and generalizing the results in matroid theo...
Given an undirected graph G = (V,E), we consider the graph bisection problem, which consists in partitioning the nodes of G in two disjoined sets with p and n− p nodes respectively such that the total weight of edges crossing between subsets is minimal. We apply QCR to it, a general method, presented in [4], which combines semidefinite programming (SDP) and Mixed Integer Quadratic Programming (...
1 The " convex " KKT theorem: a recapitulation We recall the Karush-Kuhn-Tucker theorem for convex programming, as treated in the previous lecture (see Corollary 3.5 of [OSC]).
The efficient set of a linear multicriteria programming problem can be represented by a ’reverse convex constraint’ of the form g(z) ≤ 0, where g is a concave function. Consequently, the problem of optimizing some real function over the efficient set belongs to an important problem class of global optimization called reverse convex programming. Since the concave function used in the literature ...
multi objective quadratic fractional programming (moqfp) problem involves optimization of several objective functions in the form of a ratio of numerator and denominator functions which involve both contains linear and quadratic forms with the assumption that the set of feasible solutions is a convex polyhedral with a nite number of extreme points and the denominator part of each of the object...
In this paper we continue the development of a theoretical foundation for efficient primal-dual interior-point algorithms for convex programming problems expressed in conic form, when the cone and its associated barrier are self-scaled (see [NT97]). The class of problems under consideration includes linear programming, semidefinite programming and convex quadratically constrained quadratic prog...
Convex optimization is a special class of optimization problems, that includes many problems of interest such as least squares and linear programming problems. Convex optimization problems are considered especially important because several efficient algorithms exist for solving them; as a result, many machine learning problems have been modeled as convex optimization. In a typical convex optim...
Abstract. Duality theory has played a key role in convex programming in the absence of data uncertainty. In this paper, we present a duality theory for convex programming problems in the face of data uncertainty via robust optimization. We characterize strong duality between the robust counterpart of an uncertain convex program and the optimistic counterpart of its uncertain Lagrangian dual. We...
In this paper, under a suitable regularity condition, we establish that a broad class of conic convex polynomial optimization problems, called conic sum-of-squares convex polynomial programs, exhibits exact conic programming relaxation, which can be solved by various numerical methods such as interior point methods. By considering a general convex cone-program, we give unified results that appl...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید