نتایج جستجو برای: decellularization extracellular matrix
تعداد نتایج: 450604 فیلتر نتایج به سال:
BACKGROUND The only definitive treatment for end-stage organ failure is orthotopic transplantation. Lung extracellular matrix (LECM) holds great potential as a scaffold for lung tissue engineering because it retains the complex architecture, biomechanics, and topologic specificity of the lung. Decellularization of human lungs rejected from transplantation could provide "ideal" biologic scaffold...
BACKGROUND The use of decellularized biological scaffolds for the reconstruction of small-diameter vascular grafts remains a challenge in tissue engineering. Thrombogenicity is an important cause of obstruction in these vessels due to decellularization. Seeding of the decellularized vascular constructs with endothelial cells is therefore a prerequisite for the prevention of thrombosis. The aim ...
BACKGROUND The development of a suitable extracellular matrix (ECM) scaffold is the first step in vascular tissue engineering (VTE). Synthetic vascular grafts are available as an alternative to autologous vessels in large-diameter arteries (>8 mm) and medium-diameter arteries (6-8 mm). In small-diameter vessels (<6 mm), synthetic vascular grafts are of limited use due to poor patency rates. Com...
Various extracellular matrix (ECM) scaffolds, isolated through decellularization, were suggested as ideal biomimetic materials for 'Functional tissue engineering' (FTE). The decellularization process comprises a compromise between damaging and preserving the ultrastructure and composition of ECM-previously shown to affect cell survival, proliferation, migration, organization, differentiation an...
Extracellular matrix (ECM) serves a key role in cell migration, attachment, and cell development. Here we report that ECM derived from human umbilical vein endothelial cells (HUVEC) promoted osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSC). We first produced an HUVEC-derived ECM on a three-dimensional (3D) beta-tricalcium phosphate (β-TCP) scaffold by HUVEC seeding,...
BACKGROUND Decellularization of tendon tissue plays a pivotal role in current tissue engineering approaches for in vitro research as well as for translation of graft-based tendon restoration into clinics. Automation of essential decellularization steps like freeze-thawing is crucial for the development of more standardized decellularization protocols and commercial graft production under good m...
BACKGROUND Heart valve tissue engineering represents a concept for improving the current methods of valvular heart disease therapy. The aim of this study was to develop tissue engineered heart valves combining human umbilical vein endothelial cells (HUVECs) and decellularized human heart valve matrices. METHODS AND RESULTS Pulmonary (n=9) and aortic (n=6) human allografts were harvested from ...
Control over cell engraftment, survival, and function remains critical for heart repair. We have established a tissue engineering platform for the delivery of human mesenchymal progenitor cells (MPCs) by a fully biological composite scaffold. Specifically, we developed a method for complete decellularization of human myocardium that leaves intact most elements of the extracellular matrix, as we...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید