نتایج جستجو برای: ensemble feature selection
تعداد نتایج: 564008 فیلتر نتایج به سال:
Ensembles of classifiers will produce lower errors than the member classifiers if there is diversity in the ensemble. One means of producing this diversity in nearest neighbour classifiers is to base the member classifiers on different feature subsets. In this paper we show four examples where this is the case. This has implications for the practice of feature subset selection (an important iss...
Exploiting the diversity of hypotheses produced by evolutionary learning, a new ensemble approach for Feature Selection is presented, aggregating the feature rankings extracted from the hypotheses. A statistical model is devised to enable the direct evaluation of the approach; comparative experimental results show its good behavior on non-linear concepts when the features outnumber the examples.
We prove uniform consistency of Random Survival Forests (RSF), a newly introduced forest ensemble learner for analysis of right-censored survival data. Consistency is proven under general splitting rules, bootstrapping, and random selection of variables-that is, under true implementation of the methodology. Under this setting we show that the forest ensemble survival function converges uniforml...
A new ensemble of support vector machines (SVM) based on random subspace (RS) and feature selection is developed and applied to the problem of differential diagnosis of erythemato-squamous diseases. Each classifier has a ‘‘favourite’’ class. To find the feature subset for the classifier Di with ‘‘favourite’’ class wi, we calculate the best features to discriminate this class (wi) from all the o...
User authentication based on keystroke dynamics is concerned with accepting or rejecting someone based on the way the person types. A timing vector is composed of the keystroke duration times interleaved with the keystroke interval times. Which times or features to use in a classifier is a classic feature selection problem. Genetic algorithm based wrapper approach does not only solve the proble...
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
The majority voting and accurate prediction of classification algorithm in data mining are challenging task for data classification. For the improvement of data classification used different classifier along with another classifier in a manner of ensemble process. Ensemble process increase the classification ratio of classification algorithm, now such par diagram of classification algorithm is ...
This paper describes a novel feature selection algorithm for unsupervised clustering, that combines the clustering ensembles method and the population based incremental learning algorithm. The main idea of the proposed unsupervised feature selection algorithm is to search for a subset of all features such that the clustering algorithm trained on this feature subset can achieve the most similar ...
It is generally accepted that Wrapper approaches will outperform Filter-based approaches to feature selection, particularly in situations where an adequate amount of data is available. What is often overlooked is that Wrapper approaches can be unstable. For instance, different partitionings of the training data can result in different routes through the search space and thus in different featur...
This paper describes the UWaterloo affect prediction system developed for EmoInt2017. We delve into our feature selection approach for affect intensity, affect presence, sentiment intensity and sentiment presence lexica alongside pretrained word embeddings, which are utilized to extract emotion intensity signals from tweets in an ensemble learning approach. The system employs emotion specific m...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید