نتایج جستجو برای: fourth order exponential time differenceing runge kutta method

تعداد نتایج: 3828676  

2002
Y. T. Chew C. Shu Y. Peng

A new implementation of boundary condition based on the half-covolume and bounce-back rule for the non-equilibrium distribution function for the finite volume LBM is proposed here. The numerical simulation results for the expansion channel flow and driven cavity problem indicate that this method is workable for arbitrary meshes. In addition, the fourth order Runge–Kutta scheme is found to be a ...

Journal: :J. Applied Mathematics 2012
Ibrahim H. I. Ahmed Peter J. Witbooi Kailash C. Patidar

We present a model for an SIR epidemic in a population consisting of two components—locals and migrants. We identify three equilibrium points and we analyse the stability of the disease free equilibrium. Then we apply optimal control theory to find an optimal vaccination strategy for this 2-group population in a very simple form. Finally we support our analysis by numerical simulation using the...

2002
Hem Raj Joshi

A system of ordinary differential equations, which describes the interaction of HIV and T -cells in the immune system is utilized, and optimal controls representing drug treatment strategies of this model are explored. Two types of treatments are used, and existence and uniqueness results for the optimal control pair are established. The optimality system is derived and then solved numerically ...

Journal: :Math. Comput. 2006
M. Z. Liu Z. W. Yang Y. Xu

In the present paper, the modified Runge-Kutta method is constructed, and it is proved that the modified Runge-Kutta method preserves the order of accuracy of the original one. The necessary and sufficient conditions under which the modified Runge-Kutta methods with the variable mesh are asymptotically stable are given. As a result, the θ-methods with 1 2 ≤ θ ≤ 1, the odd stage Gauss-Legendre m...

2007
Peter J. Olver

This part is concerned with the numerical solution of initial value problems for systems of ordinary differential equations. We will introduce the most basic one-step methods, beginning with the most basic Euler scheme, and working up to the extremely popular Runge–Kutta fourth order method that can be successfully employed in most situations. We end with a brief discussion of stiff differentia...

2012
G. Zhang B. T. F. Chung

In this work, the optimization for a radiative-convective annular fin of arbitrary profile with base wall thermal resistances is considered. A fourth order Runge-Kutta method is used to solve the associated non-linear governing equations. Further differentiations yield the optimum heat transfer and the optimum fin dimensions. To facilitate the thermal design, design charts for optimum dimension...

2009
Mohammad Mehdi Rashidi Hamed Shahmohamadi Saeed Dinarvand Ben T. Nohara

The flow of a viscous incompressible fluid between two parallel plates due to the normal motion of the plates is investigated. The unsteady Navier-Stokes equations are reduced to a nonlinear fourthorder differential equation by using similarity solutions. Homotopy analysis method HAM is used to solve this nonlinear equation analytically. The convergence of the obtained series solution is carefu...

2015
R.L.V.Renuka Devi A. Neeraja N. Bhaskar Reddy

This paper focuses on a steady two-dimensional slip flow of a viscous incompressible electrically conducting and radiating fluid past a linearly stretching sheet with temperature dependent viscosity is taking into account. The governing boundary layer equations are solved by using Runge-Kutta fourth order technique along with shooting method. The influence of various governing parameters on the...

Journal: :J. Sci. Comput. 2011
Mohammad Motamed Colin B. Macdonald Steven J. Ruuth

We study the linear stability of the fifth-order Weighted Essentially Non-Oscillatory spatial discretization (WENO5) combined with explicit time stepping applied to the one-dimensional advection equation. We show that it is not necessary for the stability domain of the time integrator to include a part of the imaginary axis. In particular, we show that the combination of WENO5 with either the f...

Journal: :Math. Comput. 2009
Stefano Maset Marino Zennaro

In this paper we define unconditional stability properties of exponential Runge-Kutta methods when they are applied to semi-linear systems of ordinary differential equations characterized by a stiff linear part and a nonstiff non-linear part. These properties are related to a class of systems and to a specific norm. We give sufficient conditions in order that an explicit method satisfies such p...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید